931 resultados para Mammalian-cells
Resumo:
Starburst polyamidoamine dendrimers are a new class of synthetic polymers with unique structural and physical characteristics. These polymers were investigated for the ability to bind DNA and enhance DNA transfer and expression in a variety of mammalian cell lines. Twenty different types of polyamidoamine dendrimers were synthesized, and the polymer structure was confirmed using well-defined analytical techniques. The efficiency of plasmid DNA transfection using dendrimers was examined using two reporter gene systems: firefly luciferase and bacterial beta-galactosidase. The transfections were performed using various dendrimers, and levels of expression of the reporter protein were determined. Highly efficient transfection of a broad range of eukaryotic cells and cell lines was achieved with minimal cytotoxicity using the DNA/dendrimer complexes. However, the ability to transfect cells was restricted to certain types of dendrimers and in some situations required the presence of additional compounds, such as DEAE-dextran, that appeared to alter the nature of the complex. A few cell lines demonstrated enhanced transfection with the addition of chloroquine, indicating endosomal localization of the complexes. The capability of a dendrimer to transfect cells appeared to depend on the size, shape, and number of primary amino groups on the surface of the polymer. However, the specific dendrimer most efficient in achieving transfection varied between different types of cells. These studies demonstrate that Starburst dendrimers can transfect a wide variety of cell types in vitro and offer an efficient method for producing permanently transfected cell lines.
Resumo:
During metamorphosis of Drosophila melanogaster, a cascade of morphological changes is triggered by the steroid hormone 20-OH ecdysone via the ecdysone receptor, a member of the nuclear receptor superfamily. In this report, we have transferred insect hormone responsiveness to mammalian cells by the stable expression of a modified ecdysone receptor that regulates an optimized ecdysone responsive promoter. Inductions reaching 4 orders of magnitude have been achieved upon treatment with hormone. Transgenic mice expressing the modified ecdysone receptor can activate an integrated ecdysone responsive promoter upon administration of hormone. A comparison of tetracycline-based and ecdysone-based inducible systems reveals the ecdysone regulatory system exhibits lower basal activity and higher inducibility. Since ecdysone administration has no apparent effect on mammals, its use for regulating genes should be excellent for transient inducible expression of any gene in transgenic mice and for gene therapy.
Resumo:
This paper describes the use of the baculovirus Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) as a vector for gene delivery into mammalian cells. A modified AcMNPV virus was prepared that carried the Escherichia coli lacZ reporter gene under control of the Rous sarcoma virus promoter and mammalian RNA processing signals. This modified baculovirus was then used to infect a variety of mammalian cell lines. After infection of the human liver cell lines HepG2, >25% of the cells showed high-level expression of the transduced gene. Over 70% of the cells in primary cultures of rat hepatocytes showed expression of beta-galactosidase after exposure to the virus. Cell lines from other tissues showed less or no expression of lacZ after exposure to the virus. The block to expression in less susceptible cells does not appear to result from the ability to be internalized by the target cell but rather by events subsequent to viral entry. The onset of lacZ expression occurred within 6 hr of infection in HepG2 cells and peaked 12-24 hr postinfection. Because AcMNPV is able to replicate only in insect hosts, is able to carry large (>15 kb) inserts, and is a highly effective gene delivery vehicle for primary cultures of hepatocytes, AcMNPV may be a useful vector for genetic manipulation of liver cells.
Resumo:
An experimental strategy to facilitate correction of single-base mutations of episomal targets in mammalian cells has been developed. The method utilizes a chimeric oligonucleotide composed of a contiguous stretch of RNA and DNA residues in a duplex conformation with double hairpin caps on the ends. The RNA/DNA sequence is designed to align with the sequence of the mutant locus and to contain the desired nucleotide change. Activity of the chimeric molecule in targeted correction was tested in a model system in which the aim was to correct a point mutation in the gene encoding the human liver/bone/kidney alkaline phosphatase. When the chimeric molecule was introduced into cells containing the mutant gene on an extrachromosomal plasmid, correction of the point mutation was accomplished with a frequency approaching 30%. These results extend the usefulness of the oligonucleotide-based gene targeting approaches by increasing specific targeting frequency. This strategy should enable the design of antiviral agents.
Resumo:
The bacterial pathogen Shigella flexneri causes bacillary dysentery in humans by invading coloncytes. Upon contact with epithelial cells, S. flexneri elicits localized plasma membrane projections sustained by long actin filaments which engulf the microorganism. The products necessary for Shigella entry include three secretory proteins: IpaB, IpaC, and IpaD. Extracellular IpaB and IpaC associate in a soluble complex, the Ipa complex. We have immunopurified this Ipa complex on latex beads and found that they were efficiently internalized into HeLa cells. Like S. flexneri entry, uptake of the beads bearing the Ipa complex was associated with membrane projections and polymerization of actin at the site of cell-bead interaction and was dependent on small Rho GTPases. These results indicate that a secreted factor can promote S. flexneri entry into epithelial cells.
Resumo:
In human immunodeficiency virus type 1-infected cells, the efficient expression of viral proteins from unspliced and singly spliced RNAs is dependent on two factors: the presence in the cell of the viral protein Rev and the presence in the viral RNA of the Rev-responsive element (RRE). We show here that the HIV-1 Rev/RRE system can increase the expression of avian leukosis virus (ALV) structural proteins in mammalian cells (D-17 canine osteosarcoma) and promote the release of mature ALV virions from these cells. In this system, the Rev/RRE interaction appears to facilitate the export of full-length unspliced ALV RNA from the nucleus to the cytoplasm, allowing increased production of the ALV structural proteins. Gag protein is produced in the cytoplasm of the ALV-transfected cells even in the absence of a Rev/RRE interaction. However, a functional Rev/RRE interaction increases the amount of Gag present intracellularly and, more strikingly, results in the release of mature ALV particles into the supernatant. RCAS virus containing an RRE is replication-competent in chicken embryo fibroblasts; however, we have been unable to determine whether the particles produced in D-17 cells are as infectious as the particles produced in chicken embryo fibroblasts.
Resumo:
We developed a stringently regulated expression system for mammalian cells that uses (i) the RNA polymerase, phi 10 promoter, and T phi transcriptional terminator of bacteriophage T7; (ii) the lac repressor, lac operator, rho-independent transcriptional terminators and the gpt gene of Escherichia coli; (iii) the RNA translational enhancer of encephalomyocarditis virus; and (iv) the genetic background of vaccinia virus. In cells infected with the recombinant vaccinia virus, reporter beta-galactosidase synthesis was not detected in the absence of inducer. An induction of at least 10,000- to 20,000-fold occurred upon addition of isopropyl beta-D-thiogalactopyranoside or by temperature elevation from 30 to 37 degrees C using a temperature-sensitive lac repressor. Regulated synthesis of the secreted and highly glycosylated human immunodeficiency virus 1 envelope protein gp120 was also demonstrated. Yields of both proteins were approximately 2 mg per 10(8) cells in 24 hr. Plasmid transfer vectors for cloning and expression of complete or incomplete open reading frames in recombinant vaccinia viruses are described.
Resumo:
We have developed a strategy to generate mutant genes in mammalian cells in a conditional manner by employing a fusion protein, Cre-ER, consisting of the loxP site-specific Cre recombinase linked to the ligand-binding domain of the human estrogen receptor. We have established homozygous retinoid X receptor alpha-negative (RXR alpha-/-) F9 embryonal carcinoma cells constitutively expressing Cre-ER and have shown that estradiol or the estrogen agonist/antagonist 4-hydroxytamoxifen efficiently induced the recombinase activity, whereas no activity was detected in the absence of ligand or in the presence of the antiestrogen ICI 164,384. Furthermore, using a targeting vector containing a selection marker flanked by loxP sites, we have inactivated one retinoic acid receptor alpha allele in such a line, demonstrating that the presence of the recombinase does not inhibit homologous recombination. Combining this conditional site-specific recombination system with tissue-specific expression of Cre-ER may allow modification of the mammalian genome in vivo in a spatiotemporally regulated manner.
Resumo:
Peroxisome proliferators induce qualitatively predictable pleiotropic responses, including development of hepatocellular carcinomas in rats and mice despite the inability of these compounds to interact with and damage DNA directly. In view of the nongenotoxic nature of peroxisome proliferators, it has been postulated that hepatocarcinogenesis by this class of chemicals is due to a receptor-mediated process leading to transcriptional activation of H2O2-generating peroxisomal fatty acyl-CoA oxidase (ACOX) in liver. To test this hypothesis, we overexpressed rat ACOX in African green monkey kidney cells (CV-1 cells) under control of the cytomegalovirus promoter. A stably transfected CV-1 cell line overexpressing rat ACOX, designated CV-ACOX4, when exposed to a fatty acid substrate (150 microM linoleic acid) for 2-6 weeks, formed transformed foci, grew efficiently in soft agar, and developed adenocarcinomas when transplanted into nude mice. These findings indicate that sustained overexpression of H2O2-generating ACOX causes cell transformation and provide further support for the role of peroxisome proliferation in hepatocarcinogenesis induced by peroxisome proliferators.
Resumo:
The DNA-dependent protein kinase (DNA-PK) consists of three polypeptide components: Ku-70, Ku-80, and an approximately 350-kDa catalytic subunit (p350). The gene encoding the Ku-80 subunit is identical to the x-ray-sensitive group 5 complementing gene XRCC5. Expression of the Ku-80 cDNA rescues both DNA double-strand break (DSB) repair and V(D)J recombination in group 5 mutant cells. The involvement of Ku-80 in these processes suggests that the underlying defect in these mutant cells may be disruption of the DNA-PK holoenzyme. In this report we show that the p350 kinase subunit is deleted in cells derived from the severe combined immunodeficiency mouse and in the Chinese hamster ovary cell line V-3, both of which are defective in DSB repair and V(D)J recombination. A centromeric fragment of human chromosome 8 that complements the scid defect also restores p350 protein expression and rescues in vitro DNA-PK activity. These data suggest the scid gene may encode the p350 protein or regulate its expression and are consistent with a model whereby DNA-PK is a critical component of the DSB-repair pathway.
Resumo:
To achieve a better understanding of how D5 dopamine receptors mediate the actions of dopamine in brain, we have developed antibodies specific for the D5 receptor. D5 antibodies reacted with recombinant baculovirus-infected Sf9 cells expressing the D5 receptor but not with the D1 receptor or a variety of other catecholaminergic and muscarinic receptors. Epitope-tagged D5 receptors expressed in mammalian cells were reactive with both D5 antibodies and an epitope-specific probe. A mixture of N-linked glycosylated polypeptides and higher molecular-mass species was detected on immunoblots of membrane fractions of D5-transfected cells and also of primate brain. D5 receptor antibodies intensely labeled pyramidal neurons in the prefrontal cortex, whereas spiny medium-sized neurons and aspiny large interneurons of the caudate nucleus were relatively lightly labeled. Antibodies to the D5 dopamine receptor should prove important in experimentally determining specific roles for the D5 and D1 receptors in cortical processes and diseases.
Resumo:
Proteins of the p120 family have been implicated in the regulation of cadherin-based cell adhesion, but their relative importance in this process and their mechanism of action have remained less clear. Three papers in this issue suggest that p120 plays a key role in maintaining normal levels of cadherin in mammalian cells, and that it may do so by regulating cadherin trafficking.
Resumo:
Stable expression of human groups IIA and X secreted phospholipases A(2) (hGIIA and hGX) in CHO-K1 and HEK293 cells leads to serum- and interleukin-1beta-promoted arachidonate release. Using mutant CHO-K1 cell lines, it is shown that this arachidonate release does not require heparan sulfate proteoglycan- or glycosylphosphatidylinositol-anchored proteins. It is shown that the potent secreted phospholipase A(2) inhibitor Me-Indoxam is cell-impermeable. By use of Me-Indoxam and the cell-impermeable, secreted phospholipase A(2) trapping agent heparin, it is shown that hGIIA liberates free arachidonate prior to secretion from the cell. With hGX-transfected CHO-K1 cells, arachidonate release occurs before and after enzyme secretion, whereas all of the arachidonate release from HEK293 cells occurs prior to enzyme secretion. Immunocytochemical studies by confocal laser and electron microscopies show localization of hGIIA to the cell surface and Golgi compartment. Additional results show that the interleukin-1beta-dependent release of arachidonate is promoted by secreted phospholipase A(2) expression and is completely dependent on cytosolic (group IVA) phospholipase A(2). These results along with additional data resolve the paradox that efficient arachidonic acid release occurs with hGIIA-transfected cells, and yet exogenously added hGIIA is poorly able to liberate arachidonic acid from mammalian cells.
Auxiliary subunit regulation of high-voltage activated calcium channels expressed in mammalian cells
Resumo:
The effects of auxiliary calcium channel subunits on the expression and functional properties of high-voltage activated (HVA) calcium channels have been studied extensively in the Xenopus oocyte expression system, but are less completely characterized in a mammalian cellular environment. Here, we provide the first systematic analysis of the effects of calcium channel beta and alpha(2)-delta subunits on expression levels and biophysical properties of three different types (Ca(v)1.2, Ca(v)2.1 and Ca(v)2.3) of HVA calcium channels expressed in tsA-201 cells. Our data show that Ca(v)1.2 and Ca(v)2.3 channels yield significant barium current in the absence of any auxiliary subunits. Although calcium channel beta subunits were in principle capable of increasing whole cell conductance, this effect was dependent on the type of calcium channel alpha(1) subunit, and beta(3) subunits altogether failed to enhance current amplitude irrespective of channel subtype. Moreover, the alpha(2)-delta subunit alone is capable of increasing current amplitude of each channel type examined, and at least for members of the Ca(v)2 channel family, appears to act synergistically with beta subunits. In general agreement with previous studies, channel activation and inactivation gating was regulated both by beta and by alpha(2)-delta subunits. However, whereas pronounced regulation of inactivation characteristics was seen with the majority of the auxiliary subunits, effects on voltage dependence of activation were only small (< 5 mV). Overall, through a systematic approach, we have elucidated a previously underestimated role of the alpha(2)-delta(1) subunit with regard to current enhancement and kinetics. Moreover, the effects of each auxiliary subunit on whole cell conductance and channel gating appear to be specifically tailored to subsets of calcium channel subtypes.