170 resultados para Malvern


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to document changes in Holocene glacier extent and activity in NE Greenland (~73° N) we study marine sediment records that extend from the fjords (PS2631 and PS2640), across the shelf (PS2623 and PS2641), to the Greenland Sea (JM07-174GC). The primary bedrock geology of the source areas is the Caledonian sediment outcrop, including Devonian red beds, plus early Neoproterozoic gneisses and early Tertiary volcanics. We examine the variations in colour (CIE*), grain size, and bulk mineralogy (from X-ray diffraction of the <2 mm sediment fraction). Fjord core PS2640 in Sofia Sund, with a marked red hue, is distinct in grain size, colour and mineralogy from the other fjord and shelf cores. Five distinct grain-size modes are distinguished of which only one is associated with a coarse ice-rafting signal - this mode is rare in the mid- and late Holocene. A sediment unmixing program (SedUnMixMC) is used to characterize down-core changes in sediment composition based on the upper late Holocene sediments from cores PS2640 (Sofia Sund), PS2631 (Kaiser Franz Joseph Fjord) and PS2623 (south of Shannon Is), and surface samples from the Kara Sea (as an indicator of transport from the Russian Arctic shelves). Major changes in mineral composition are noted in all cores with possible coeval shifts centred c. 2.5, 4.5 and 7.5 cal. ka BP (±0.5 ka) but are rarely linked with changes in the grain-size spectra. Coarse IRD (>2 mm) and IRD-grain-size spectra are rare in the last 9-10 cal. ka BP and, in contrast with areas farther south (~68° N), there is no distinct IRD signal at the onset of neoglaciation. Our paper demonstrates the importance of the quantitative analysis of sediment properties in clarifying source to sink changes in glacial marine environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seven hundred and nineteen samples from throughout the Cainozoic section in CRP-3 were analysed by a Malvern Mastersizes laser particle analyser, in order to derive a stratigraphic distribution of grain-size parameters downhole. Entropy analysis of these data (using the method of Woolfe & Michibayashi, 1995) allowed recognition of four groups of samples, each group characterised by a distinctive grain-size distribution. Group 1, which shows a multi-modal distribution, corresponds to mudrocks, interbedded mudrock/sandstone facies, muddy sandstones and diamictites. Group 2, with a sand-grade mode but showing wide dispersion of particle size, corresponds to muddy sandstones, a few cleaner sandstones and some conglomerates. Group 3 and Group 4 are also sand-dominated, with better grain-size sorting, and correspond to clean, well-washed sandstones of varying mean grain-size (medium and fine modes, respectively). The downhole disappearance of Group 1, and dominance of Groups 3 and 4 reflect a concomitant change from mudrock- and diamictite-rich lithology to a section dominated by clean, well-washed sandstones with minor conglomerates. Progressive downhole increases in percentage sand and principal mode also reflect these changes. Significant shifts in grain-size parameters and entropy group membership were noted across sequence boundaries and seismic reflectors, as recognised in other studies.