165 resultados para Macchi Bawan
Resumo:
The accurate electron density and linear optical properties of L-histidinium hydrogen oxalate are discussed. Two high-resolution single crystal X-ray diffraction experiments were performed and compared with density functional calculations in the solid state as well as in the gas phase. The crystal packing and the hydrogen bond network are accurately investigated using topological analysis based on quantum theory of atoms in molecules, Hirshfeld surface analysis, and electrostatic potential mapping. The refractive indices are computed from couple perturbed Kohn-Sham calculations and measured experimentally. Moreover, distributed atomic polarizabilities are used to analyze the origin of the linear susceptibility in the crystal, in order to separate molecular and intermolecular causes. The optical properties are also correlated with the electron density distribution. This compound also offers the possibility to test the electron density building block approach for material science and different refinement schemes for accurate positions and displacement parameters of hydrogen atoms, in the absence of neutron diffraction data.
Resumo:
A general introduction to the state of the art in modeling metal organic materials using transferable atomic multipoles is provided. The method is based on the building block partitioning of the electron density, which is illustrated with some examples of potential applications and with detailed discussions of the advantages and pitfalls. The interactions taking place between building blocks are summarized and are used to discuss the properties that can be calculated.
Resumo:
This tutorial review article is intended to provide a general guidance to a reader interested to learn about the methodologies to obtain accurate electron density mapping in molecules and crystalline solids, from theory or from experiment, and to carry out a sensible interpretation of the results, for chemical, biochemical or materials science applications. The review mainly focuses on X-ray diffraction techniques and refinement of experimental models, in particular multipolar models. Neutron diffraction, which was widely used in the past to fix accurate positions of atoms, is now used for more specific purposes. The review illustrates three principal analyses of the experimental or theoretical electron density, based on quantum chemical, semi-empirical or empirical interpretation schemes, such as the quantum theory of atoms in molecules, the semi-classical evaluation of interaction energies and the Hirshfeld analysis. In particular, it is shown that a simple topological analysis based on a partition of the electron density cannot alone reveal the whole nature of chemical bonding. More information based on the pair density is necessary. A connection between quantum mechanics and observable quantities is given in order to provide the physical grounds to explain the observations and to justify the interpretations.
Resumo:
cis,cis,cis,cis-[4.5.5.5]Fenestrane 11 was prepared by a novel route. The energy hypersurface of some stereoisomeric and substituted [4.5.5.5]fenestranes and -fenestrenes was explored by DFT calculations. The impact of some structural modifications, which enhance the planarizing deformation in the central C(C)4 substructures are discussed.
Resumo:
Alkoxy-N-methyl-acetiminium salts were prepared by addition of CH3OH and C2H5OH to N-methyl acetonitrilium fluorosulfonate at low temperature. Analysis of the (5)J(HH) and (3)J(13)C-H coupling constants in the NMR spectra showed an anti addition with a diastereoselectivity of >9596. Deprotonation of these salts with (Z)-configuration gave the corresponding N-methyl-alkoxyacetimines with very high (E)-configuration. Upon protonation at -78 degrees C, these iminoesters gave the corresponding alkoxy-N-methyl-acetirninium salts with (E)-configuration. Computational analyses of the iminoesters and the corresponding iminium cations including the conformations give insight into the relative stability. Nitrilium salts can be used as reagents, exemplified by some esterifications between simple acids and alcohols.
Resumo:
The anionic cluster Pt-19(CO)(22)](4-) (1), of pentagonal symmetry, reacts with CO and AuPPh3+ fragments. Upon increasing the Au:Pt-19, molar ratio, different species are sequentially formed, but only the last two members of the series could be characterized by X-ray diffraction, namely, Pt-19(CO)(24)(mu(4)-AuPPh3)(3)](-) (2) and Pt-19(CO)(24){mu(4)-Au-2(PPh3)(2)}(2)] (3).The metallic framework of the starting cluster is completely modified after the addition of CO and AuL+, and both products display the same platinum core of trigonal symmetry, with closely packed metal atoms. The three AuL+ units cap three different square faces in 2, whereas four AuL+ fragments are grouped in two independent bimetallic units in the neutral cluster 3. Electrochemical and spectroelectrochemical studies on 2 showed that its redox ability is comparable with that of the homometallic 1.