895 resultados para MYOCARDIAL-INFARCTION
Resumo:
Background/Aims: The role of tissue vitamin-A insufficiency on post-infarction ventricular remodeling is unknown. We tested the hypothesis that cardiac vitamin A insufficiency on post-infarction is associated with adverse myocardial remodeling. Methods: After infarction, rats were allocated into two groups: C (controls, n=25); VA (dietary vitamin A restriction, n= 26). After 3 months, the animals were submitted to echocardiogram, morphometric and biochemical analysis. Results: Rats fed the vitamin-A-deficient diet had lower heart and liver retinol concentration and normal plasma retinol. There were no differences in infarct size between the groups. VA showed higher diastolic left ventricular area normalised by body weight (C= 1.81 +/- 0.4 cm2/kg, VA= 2.15 +/- 0.3 cm2/kg; p=0.03), left ventricular diameter (C= 9.4 +/- 1.4 mm, VA= 10.5 +/- 1.2 mm; p=0.04), but similar systolic ventricular fractional area change (C= 33.0 +/- 10.0 %, VA= 32.1 +/- 8.7 %; p=0.82). VA showed decreased isovolumetric relaxation time normalised by heart rate (C= 68.8 +/- 11.4 ms, VA= 56.3 +/- 16.8 ms; p=0.04). VA showed higher interstitial collagen fraction (C= 2.8 +/- 0.9 %, VA= 3.7 +/- 1.1 %; p=0.05). There were no differences in myosin heavy chain expression, metalloproteinase 2 and 9 activation, or IFN-gamma and TNF-alpha cardiac levels. Conclusion: Local tissue vitamin A insufficiency intensified ventricular remodeling after MI, worsening diastolic dysfunction. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Background: The AIN-93 diet was proposed by the American Institute of Nutrition with the objective of standardising studies in experimental nutrition. Our objective was to analyze the effects of AIN-93 diet after myocardial infarction in rats.Methods: Post weaning, the animals were divided into two groups: control (C, n=62), fed the standard diet of our laboratory (Labina); AIN-93 Group (n=70), fed the AIN-93 diet. Achieving 250 g, the animals were subjected to myocardial infarction.Results: Early mortality was increased in AIN-93 animals, associated with lower serum levels of calcium, magnesium, potassium, sodium, and phosphorus. on the other hand, after 90 days, AIN-93 showed smaller normalized left ventricular dimensions. The caloric and carbohydrate intake was smaller, but the fat intake was higher in AIN-93 rats. AIN-93 group also showed increased levels of beta-hydroxyacylcoenzyme A dehydrogenase and citrate synthase. In addition, serum levels of insulin and cardiac levels of malondialdehyde, metalloproteinases-2 and -9, and TNF-alpha and IFN-gamma were decreased in the AIN-93 group.Conclusion: AIN-93 diet increased early mortality, while attenuated the chronic remodeling process after experimental coronary occlusion. Therefore, this diet has biological effects and should be use with attention in this model. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Although rare, major bleeding is the most important side effect of thrombolytic therapy in acute myocardial infarction (AMI) (Levine et al., 1995). Spontaneous hepatic bleeding in normal liver after thrombolytic administration has rarely been reported in literature. To our knowledge, there are only three cases of hepatic bleeding related to thrombolytic therapy in AMI. In these, the used drugs were anisolylated plasminogen streptokinase activator complex (APSAC) (Garcia-Jiménez et al., 1997; Fox et al., 1991) and rt-PA (Garcia-Jiménez et al., 1997). We report a case of hepatic bleeding after streptokinase followed by units over 60 minutes). The next day, the patient developed third-degree atrioventricular block and a temporary pacemaker was inserted. Twenty-seven hours after streptokinase infusion, the patient complained of refractory chest pain that was interpreted as post-myocardial infarction angina; clotting screen was normal and intravenous heparin was started (80 U/kg followed by 18 U/kg/hour). After four hours of heparin administration, the patient presented abdominal pain and distension, and his blood pressure and hematocrit level dropped. Abdominal ultrasonography revealed free fluid in the peritoneal cavity (about 3,000 mL). A laparotomy disclosed blood in the abdominal cavity with bleeding from the right lateral hepatic segment, which was removed. The remaining abdominal viscera were normal and there was no other evidence of hemorrhage. The partial liver resection presented subcapsular hemorrhage with small parenchymal hemorrhage. Histopathological examination also revealed focal areas of ischemic centrilobular necrosis. The patient died of multiple organ system failure 21 days after admission. Copyright © 2002 By PJD Publications Limited.
Resumo:
The objective of this study was to investigate the effects of exposure to tobacco smoke (ETS) in rats that were or were not supplemented with dietary β-carotene (BC), on ventricular remodeling and survival after myocardial infarction (Ml). Rats (n = 189) were allocated to 4 groups: the control group, n = 45; group BC administered 500 mg/kg diet, n = 49, BC supplemented rats; group ETS, n - 55, rats exposed to tobacco smoke; and group BC+ETS, n = 40. Wistar rats weighing 10O g were administered one of the treatments until they weighed 200 to 250 g (∼5 wk). The ETS rats were exposed to cigarette smoke for 30 min 4 times/d, in a chamber connected to a smoking device. After reaching a weight of 200-250 g, rats were subjected to experimental MI (coronary artery occlusion) and mortality rates were determined over the next 105 d. In addition, echocardiographic, isolated heart, morphometrical, and biochemical studies were performed. Mortality data were tested using Kaplan-Meyer curves and other data by 2-way ANOVA. Survival rates were greater in the ETS group (58.2%) than in the control (33.3%) (P = 0.001) and BC+ETS rats (30.0%) (P = 0.007). The groups did not differ in the other comparisons. Left ventricular end-diastolic diameter normalized to body weight was greater and maximal systolic pressures were lower in the ETS groups than in non-ETS groups. Previous exposure to tobacco smoke induced a process of cardiac remodeling after MI. There is a paradoxical protector effect with tobacco smoke exposure, characterized by lower mortality, which is offset by BC supplementation. © 2005 American Society for Nutritional Sciences.
Resumo:
The objective of this study was to evaluate the role of retinoic acid in experimental postinfarction myocardial remodeling. Wistar rats were subjected to myocardial infarction (MI) and treated with retinoic acid (RA), 0.3 mg/(kg · d) (MI-RA, n = 29), or fed a control diet (MI, n = 34). After 6 mo, the surviving rats (MI-RA = 18 and MI = 22) underwent echocardiograms, and isolated hearts were tested for function in vitro. The cross-sectional area of the myocyte (CSA) and interstitial collagen fraction (IC) were measured in a cross section of the heart stained by hematoxylin-eosin and picrosirius red, respectively. The CSA was smaller in the MI-RA group [229 (220, 234) μm 2] [medians (lower quartile, upper quartile)] than in the MI group [238 (232, 241) μm 2] (P = 0.01) and IC was smaller in the MI-RA group [2.4 (1.7, 3.1)%] than in the MI group [3.5 (2.6, 3.9)%] (P = 0.05). The infarct size did not differ between the groups [MI = 44.6 (40.8, 48.4)%, MI-RA = 45 (38.6, 47.2)%]. Maximum rate of rise of left ventricular pressure (+dp/dt) was greater in the MI-RA group (2645 ± 886 mm Hg/s) than in the MI group (2081 ± 617 mm Hg/s) (P = 0.05). The other variables tested did not differ between groups. Retinoic acid supplementation of rats for 6 mo attenuates the ventricular remodeling process after MI. © 2005 American Society for Nutrition.
Resumo:
Objective: We studied the effects of β-carotene (BC) on ventricular remodeling after myocardial infarction. Methods: Myocardial infarction was induced in Wistar rats that were then treated with a BC diet (500 mg/kg of diet per day; MI-BC; n = 27) or a regular diet (MI; n = 27). Hearts were analyzed in vivo and in vitro after 6 mo. Results: BC caused decreased left ventricular wall thickness (MI = 1.49 ± 0.3 mm, MI-BC = 1.23 ± 0.2 mm, P = 0.027) and increased diastolic (MI = 0.83 ± 0.15 cm2, MI-BC = 0.98 ± 0.14 cm2, P = 0.020) and systolic (MI = 0.56 ± 0.12 cm2, MI-BC = 0.75 ± 0.13 cm2, P = 0.002) left ventricular chamber areas. With respect to systolic function, the BC group presented less change in fractional area than did controls (MI = 32.35 ± 6.67, MI-BC = 23.77 ± 6.06, P = 0.004). There was no difference in transmitral diastolic flow velocities between groups. In vitro results showed decreased maximal isovolumetric systolic pressure (MI = 125.5 ± 24.1 mmHg, MI-BC = 95.2 ± 28.4 mmHg, P = 0.019) and increased interstitial myocardial collagen concentration (MI = 3.3 ± 1.2%, MI-BC = 5.8 ± 1.7%, P = 0.004) in BC-treated animals. Infarct sizes were similar between groups (MI = 45.0 ± 6.6%, MI-BC = 48.0 ± 5.8%, P = 0.246). Conclusion: Taken together, these data suggest that BC has adverse effects on ventricular remodeling after myocardial infarction. © 2006 Elsevier Inc. All rights reserved.
Resumo:
Background: The prediction of the ventricular remodeling process after acute myocardial infarction (AMI) may have important clinical implications. Objetive: To analyze echocardiographic variables predictors of remodeling in the infarction model in rats. Methods: The animals underwent echocardiography in two moments, five days and three months after infarction (AMI group) or sham surgery (control group). Linear regression was used to identify the echocardiographic variables on the fifth day after the infarction, which were predictive of remodeling after three months of coronary occlusion. We considered as a criterion of remodeling in this study, the values of left ventricular diastolic diameter (LVDD) after three months of infarction. Results: The infarction induced increase in the left chambers, associated with changes in systolic and diastolic functions. The variables body weight, left ventricular wall stress index (LVWSI), systolic area (SA), diastolic area (DA), LVDD, left ventricular systolic diameter (LVSD), fractional area change (FAC), ejection fraction (EF), fractional shortening (%Short), posterior wall shortening velocity (PWSV) and infarct size assessed five days after infarction were predictors of LVDD after three months. At the multivariate regression analysis, we included the size of infarction, the LVWSI and PWSV. The LVWSI (coefficient: 4.402, standard error: 2.221, p = 0.05), but not the size of infarction and PWSV, was a predictor of remodeling after three months of infarction. Conclusion: LVPSI was an independent predictor of remodeling three months after the myocardial infarction and could be included in the clinical stratification after the coronary occlusion.
Resumo:
Objective: The impact of obesity on ventricular remodeling after myocardial infarction (MI) is still poorly understood. Therefore, the aim of this study was to evaluate the role of waist circumference (WC) and body mass index as predictors of cardiac remodeling in patients after an anterior MI. Methods: Eighty-three consecutive patients with anterior MI were prospectively evaluated. Clinical characteristics and echocardiographic data were analyzed at admission and at a 6-mo follow-up. Ventricular remodeling was defined as a 10% increase in left ventricular end-systolic or end-diastolic diameter at the 6-mo follow-up. Results: In our study, 83 consecutive patients were evaluated (72% men). Ventricular remodeling was present in 31% of the patients (77% men). Patients with remodeling had higher creatine phosphokinase and creatine phosphokinase-MB peak values, a higher resting heart rate, a larger left atrial diameter, and a larger interventricular septum diastolic thickness. In addition, patients with remodeling had lower peak velocity of early ventricular filling deceleration time and ejection fraction. Patients with remodeling presented higher WC values (with remodeling, 99.2 ± 10.4 cm; without remodeling, 93.9 ± 10.8 cm, P = 0.04), but there were no differences in the body mass index values. In the logistic regression analysis, WC, adjusted by age, gender, ejection fraction, and creatine phosphokinase levels, was an independent predictor of left ventricular remodeling (odds ratio 1.067, 95% confidence interval 1.001-1.129, P = 0.02). Conclusion: Waist circumference, but not body mass index, is a predictor of ventricular remodeling after an anterior MI. Therefore, the WC of these patients should be measured in clinical practice. © 2013 Elsevier Inc.
Resumo:
Introduction:Our objective was to analyze the effect of spironolactone on cardiac remodeling after experimental myocardial infarction (MI), assessed by matricellular proteins levels, cardiac collagen amount and distribution, myocardial tissue metalloproteinase inhibitor-1(TIMP-1) concentration, myocyte hypertrophy, left ventricular architecture, and in vitro and in vivo cardiac function.Methods:Wistar rats were assigned to 4 groups: control group, in which animals were submitted to simulated surgery (SHAM group; n=9); group that received spironolactone and in which animals were submitted to simulated surgery (SHAM-S group, n=9); myocardial infarction group, in which animals were submitted to coronary artery ligation (MI group, n=15); and myocardial infarction group with spironolactone supplementation (MI-S group, n=15). The rats were observed for 3 months.Results:The MI group had higher values of left cardiac chambers and mass index and lower relative wall thicknesses compared with the SHAM group. In addition, diastolic and systolic functions were worse in the MI groups. However, spironolactone did not influence any of these variables. The MI-S group had a lower myocardial hydroxyproline concentration and myocyte cross-sectional area compared with the MI group. Myocardial periostin and collagen type III were lower in the MI-S group compared with the MI-group. In addition, TIMP-1 concentration in myocardium was higher in the MI-S group compared with the MI group.Conclusions:The predominant consequence of spironolactone supplementation after MI is related to reductions in collagens, with discrete attenuation of other remodeling variables. Importantly, this effect may be modulated by periostin and TIMP-1 levels. © 2013 Minicucci et al.