970 resultados para MURINE MUTATION WEAVER


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To describe a new syndrome of X-linked myoclonic epilepsy with generalized spasticity and intellectual disability (XMESID) and identify the gene defect underlying this disorder. Methods: The authors studied a family in which six boys over two generations had intractable seizures using a validated seizure questionnaire, clinical examination, and EEG studies. Previous records and investigations were obtained. Information on seizure disorders was obtained on 271 members of the extended family. Molecular genetic analysis included linkage studies and mutational analysis using a positional candidate gene approach. Results: All six affected boys had myoclonic seizures and TCS; two had infantile spasms, but only one had hypsarrhythmia. EEG studies show diffuse background slowing with slow generalized spike wave activity. All affected boys had moderate to profound intellectual disability. Hyperreflexia was observed in obligate carrier women. A late-onset progressive spastic ataxia in the matriarch raises the possibility of late clinical manifestations in obligate carriers. The disorder was mapped to Xp11.2-22.2 with a maximum lod score of 1.8. As recently reported, a missense mutation (1058C>T/P353L) was identified within the homeodomain of the novel human Aristaless related homeobox gene (ARX). Conclusions: XMESID is a rare X-linked recessive myoclonic epilepsy with spasticity and intellectual disability in boys. Hyperreflexia is found in carrier women. XMESID is associated with a missense mutation in ARX. This disorder is allelic with X-linked infantile spasms (ISSX; MIM 308350) where polyalanine tract expansions are the commonly observed molecular defect. Mutations of ARX are associated with a wide range of phenotypes; functional studies in the future may lend insights to the neurobiology of myoclonic seizures and infantile spasms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two families, originally diagnosed as having nonsyndromic X-linked mental retardation (NSXLMR), were reviewed when it was shown that they had a 24-bp duplication (428-45 1dup(24bp)) in the ARX gene [Stromme et al., 2002: Nat Genet 30:441-445]. This same duplication had also been found in three other families: one with X-linked infantile spasms and hypsarrhythmia (X-linked West syndrome, MIM 308350) and two with XLMR and dystonic movements of the hands (Partington syndrome, MIM 309510). On review, manifestations of both West and Partington syndromes were found in some individuals from both families. In addition, it was found that one individual had autism and two had autistic behavior, one of whom had epilepsy. The degree of mental retardation ranged from mild to severe. A GCG trinucleotide expansion (GCG)10+7 and a deletion of 1,517 by in the ARX gene have also been found in association with the West syndrome, and a missense mutation (1058C >T) in a family with a newly recognized form of myoclonic epilepsy, severe mental retardation, and spastic paraplegia [Scheffer et al., 2002: Neurology, in press]. Evidently all these disorders are expressions of mutations in the same gene. It remains to be seen what proportions of patients with infantile spasms, focal dystonia, autism, epilepsy, and nonsyndromic mental retardation are accounted for by mutations in the ARX gene. (C) 2002 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gamma-aminobutyric acid type A (GABA(A)) receptor mediates fast inhibitory synaptic transmission in the CNS. Dysfunction of the GABA(A) receptor would be expected to cause neuronal hyperexcitability, a phenomenon linked with epileptogenesis. We have investigated the functional consequences of an arginine-to-glutamine mutation at position 43 within the GABA(A) gamma(2)-subunit found in a family with childhood absence epilepsy and febrile seizures. Rapid-application experiments performed on receptors expressed in HEK-293 cells demonstrated that the mutation slows GABA(A) receptor deactivation and increases the rate of desensitization, resulting in an accumulation of desensitized receptors during repeated, short applications. In Xenopus laevis oocytes, two-electrode voltage-clamp analysis of steady-state currents obtained from alpha(1)beta(2)gamma(2) or alpha(1)beta(2)gamma(2)(R43Q) receptors did not reveal any differences in GABA sensitivity. However, differences in the benzodiazepine pharmacology of mutant receptors were apparent. Mutant receptors expressed in oocytes displayed reduced sensitivity to diazepam and flunitrazepam but not the imiclazopyricline zolpidem. These results provide evidence of impaired GABA(A) receptor function that could decrease the efficacy of transmission at inhibitory synapses, possibly generating a hyperexcitable neuronal state in thalamocortical networks of epileptic patients possessing the mutant subunit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although several genes for idiopathic epilepsies from families with simple Mendelian inheritance have been found, genes for the common idiopathic generalized epilepsies, where inheritance is complex, presently are elusive. We studied a large family with epilepsy where the two main phenotypes were childhood absence epilepsy (CAE) and febrile seizures (FS), which offered a special opportunity to identify epilepsy genes. A total of 35 family members had seizures over four generations. The phenotypes comprised typical CAE (eight individuals); FS alone (15), febrile seizures plus (FS+) (three); myoclonic astatic epilepsy (two); generalized epilepsy with tonic-clonic seizures alone (one); partial epilepsy (one); and unclassified epilepsy despite evaluation (two). In three remaining individuals, no information was available. FS were inherited in an autosomal dominant fashion with 75% penetrance. The inheritance of CAE in this family was not simple Mendelian, but suggestive of complex inheritance with the involvement of at least two genes. A GABA(A) receptor gamma2 subunit gene mutation on chromosome 5 segregated with FS, FS+ and CAE, and also occurred in individuals with the other phenotypes. The clinical and molecular data suggest that the GABA(A) receptor subunit mutation alone can account for the FS phenotype. An interaction of this gene with another gene or genes is required for the CAE phenotype in this family. Linkage analysis for a putative second gene contributing to the CAE phenotype suggested possible loci on chromosomes 10, 13, 14 and 15. Examination of these loci in other absence pedigrees is warranted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. In vivo studies have shown that the low-affinity 75 kDa neurotrophin receptor (p75NTR) is involved in axotomy-induced cell death of sensory and motor neurons. To further examine the importance of p75NTR in mediating neuronal death in vivo , we examined the effect of axotomy in the p75NTR-knockout mouse, which has a disrupted ligand-binding domain. 2. The extent of sensory and motor neuron loss in the p75NTR-knockout mouse following axotomy was not significantly different to that in wild-type mice. This suggests that disruption of the ligand-binding domain is insufficient to block the cell death process in axotomized neurons. 3. Immunohistochemical studies showed that axotomized neurons continue to express this mutant receptor with its intracellular death-signalling moiety intact. 4. Treatment with antisense oligonucleotides targeted against p75NTR resulted in significant reduction in the loss of axotomized neurons in the knockout mouse. 5. These data suggest that the intracellular domain of p75NTR is essential for death-signalling and that p75NTR can signal apoptosis, despite a disrupted ligand-binding domain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes the use of the q-Gaussian mutation with self-adaptation of the shape of the mutation distribution in evolutionary algorithms. The shape of the q-Gaussian mutation distribution is controlled by a real parameter q. In the proposed method, the real parameter q of the q-Gaussian mutation is encoded in the chromosome of individuals and hence is allowed to evolve during the evolutionary process. In order to test the new mutation operator, evolution strategy and evolutionary programming algorithms with self-adapted q-Gaussian mutation generated from anisotropic and isotropic distributions are presented. The theoretical analysis of the q-Gaussian mutation is also provided. In the experimental study, the q-Gaussian mutation is compared to Gaussian and Cauchy mutations in the optimization of a set of test functions. Experimental results show the efficiency of the proposed method of self-adapting the mutation distribution in evolutionary algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context: Previous studies have shown that double RET mutations may be associated with unusual multiple endocrine neoplasia type 2 (MEN 2) phenotypes. Objective: Our objective was to report the clinical features of patients harboring a previously unreported double mutation of the RET gene and to characterize this mutation in vitro. Patients: Sixteen patients from four unrelated families and harboring the C634Y/Y791F double RET germline mutation were included in the study. Results: Large pheochromocytomas measuring 6.0-14 cm and weighing upto 640 g were identified in the four index cases. Three of the four tumors were bilateral. High penetrance of pheochromocytoma was also seen in the C634Y/Y791F-mutation-positive relatives (seven of nine, 77.7%). Of these, two cases had bilateral tumors, one presented with multifocal tumors, two cases had large tumors (>5 cm), and one case, which was diagnosed with a large (5.5 x 4.5 x 4.0 cm) pheochromocytoma, reported early onset of symptoms of the disease (14 yr old). The overall penetrance of pheochromocytoma was 84.6% (11 of 13). Development of medullary thyroid carcinoma in our patients seemed similar to that observed in patients with codon 634 mutations. Haplotype analysis demonstrated that the mutation did not arise from a common ancestor. In vitro studies showed the double C634Y/Y791F RET receptor was significantly more phosphorylated than either activated wild-type receptor or single C634Y and Y791F RET mutants. Conclusions: Our data suggest that the natural history of the novel C634Y/Y791F double mutation carries a codon 634-like pattern of medullary thyroid carcinoma development, is associated with increased susceptibility to unusually large bilateral pheochromocytomas, and is likely more biologically active than each individual mutation. (J Clin Endocrinol Metab 95: 1318-1327, 2010)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myb is a key transcription factor that can regulate proliferation, differentiation, and apoptosis, predominantly in the haemopoietic system. Abnormal expression of Myb is associated with a number of cancers, both haemopoietic and non-haemopoietic. In order to better understand the role of Myb in normal and tumorigenic processes, we undertook a cDNA array screen to identify genes that are regulated by this factor. In this way, we identified the gene encoding vascular endothelial growth factor (VEGF) as being potentially regulated by the Myb oncoprotein in myeloid cells. To determine whether this was a direct effect on VEGF gene transcription, we examined the activity of the murine VEGF promoter in the presence of either wild-type (WT) or mutant forms of Myb. It was found that WT Myb was able to activate the VEGF promoter and that a minimal promoter region of 120 bp was sufficient to confer Myb responsiveness. Surprisingly, activation of the VEGF promoter was independent of DNA binding by Myb. This was shown by the use of DNA binding-defective Myb mutants and by mutagenesis of a potential Myb-binding site in the minimal promoter. Mutation of Sp1 sites within this region abolished Myb-mediated regulation of a reporter construct, suggesting that Myb DNA binding-independent activation of VEGF expression occurs via these Sp1 binding elements. Regulation of VEGF production by Myb has implications for the potential role of Myb in myeloid leukaemias and in solid tumours where VEGF may be functioning as an autocrine growth factor. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report describes the identification of a murine cytomegalovirus (MCMV) G protein-coupled receptor (GCR) homolog. This open reading frame (M33) is most closely related to, and collinear with, human cytomegalovirus UL33, and homologs are also present in human herpesvirus 6 and 7 (U12 for both viruses). Conserved counterparts in the sequenced alpha- or gammaherpesviruses have not been identified to date, suggesting that these genes encode proteins which are important for the biological characteristics of betaherpesviruses. We have detected transcripts for both UL33 and M33 as early as 3 or 4 h postinfection, and these reappear at late times. In addition, we have identified N-terminal splicing for both the UL33 and M33 RNA transcripts. For both open reading frames, splicing results in the introduction of amino acids which are highly conserved among known GCRs. To characterise the function of the M33 in the natural host, two independent MCMV recombinant viruses were prepared, each of which possesses an M33 open reading frame which has been disrupted with the beta-galactosidase gene. While the recombinant M33 null viruses showed no phenotypic differences in replication from wild-type MCMV in primary mouse embryo fibroblasts in vitro, they showed severely restricted growth in the salivary glands of infected mice. These data suggest that M33 plays an important role in vivo, in particular in the dissemination to or replication in the salivary gland, and provide the first evidence for the function of a viral GCR homolog in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context: Thyroglobulin (TG) is a large glycoprotein and functions as a matrix for thyroid hormone synthesis. TG gene mutations give rise to goitrous congenital hypothyroidism (CH) with considerable phenotype variation. Objectives: The aim of the study was to report the genetic screening of 15 patients with CH due to TG gene mutations and to perform functional analysis of the p. A2215D mutation. Design: Clinical evaluation and DNA sequencing of the TG gene were performed in all patients. TG expression was analyzed in the goitrous tissue of one patient. Human cells were transfected with expression vectors containing mutated and wild-type human TG cDNA. Results: All patients had an absent rise of serum TG after stimulation with recombinant human TSH. Sequence analysis revealed three previously described mutations (p. A2215D, p. R277X, and g. IVS30 + 1G > T), and two novel mutations (p. Q2142X and g. IVS46-1G > A). Two known (g. IVS30 + 1G/p. A2215D and p. A2215D/p. R277X) and one novel (p. R277X/g. IVS46-1G > A) compound heterozygous constellations were also identified. Functional analysis indicated deficiency in TG synthesis, reduction of TG secretion, and retention of the mutant TG within the cell, leading to an endoplasmic reticulum storage disease, whereas small amounts of mutant TG were still secreted within the cell system. Conclusion: All studied patients were either homozygous or heterozygous for TG gene mutations. Two novel mutations have been detected, and we show that TG mutation p. A2215D promotes the retention of TG within the endoplasmic reticulum and reduces TG synthesis and secretion, causing mild hypothyroidism. In the presence of sufficient iodine supply, some patients with TG mutations are able to compensate the impaired hormonogenesis and generate thyroid hormone. (J Clin Endocrinol Metab 94: 2938-2944, 2009)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tissue damage in the kidney and brain after systemic infection with Candida albicans was examined in recombinant inbred strains (AKXL) derived from AKR and C57/L progenitors. Nine of the 15 strains showed mild (C57/L-like) tissue damage. Of the remainder, two strains developed lesions comparable to the AKR parental strain, whereas four exhibited a much move severe pattern of tissue damage. This was characterized by pronounced mycelial growth in the brain, and gross oedema of the kidney, with extensive fungal colonization and marked tissue destruction. The presence of the null allele of the haemolytic complement gene (Hc) may be necessary but not sufficient, for the expression of the very severe lesions. The results were interpreted as reflecting the actions of two independent genes, which have been designated Carg1 and Carg2 (Candida albicans resistance genes 1 and 2). (C) 1997 Academic Press Limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context: Necdin activates GNRH gene expression and is fundamental for the development, migration, and axonal extension of murine GNRH neurons. In humans, necdin plays a potential role in the hypogonadotropic hypogonadism phenotype in patients with Prader-Willi syndrome. Aim: To investigate necdin gene (NDN) variants in patients with isolated hypogonadotropic hypogonadism (IHH). Patients and methods: We studied 160 Brazilian patients with IHH, which includes 92 with Kallmann syndrome and 68 with normosmic IHH. Genomic DNA was extracted and the single NDN exon was amplified and sequenced. To measure GNRH transcriptional activity, luciferase reporter plasmids containing GNRH regulatory regions were transiently transfected into GT1-7 cells in the presence and absence of overexpressed wild-type or mutant necdin. Results: A heterozygous variant of necdin, p.V318A, was identified in a 23-year-old male with Kallmann syndrome. The p.V318A was also present in affected aunt and his father and was absent in 100 Brazilian control subjects. Previous FGFR1 gene analysis revealed a missense mutation (p.P366L) in this family. Functional studies revealed a minor difference in the activation of GNRH transcription by mutant protein compared with wild type in that a significant impairment of the necdin protein activity threshold was observed. Conclusion: A rare variant of necdin (p.V318A) was described in a family with Kallmann syndrome associated with a FGFR1 mutation. Familial segregation and in vitro analysis suggested that this non-synonymous variant did not have a direct causative role in the hypogonadism phenotype. NDN mutations are not a frequent cause of congenital IHH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gonadotropin-dependent, or central, precocious puberty is caused by early maturation of the hypothalamic-pituitary-gonadal axis. In girls, this condition is most often idiopathic. Recently, a G protein-coupled receptor, GPR54, and its ligand, kisspeptin, were described as an excitatory neuroregulator system for the secretion of gonadotropin-releasing hormone (GnRH). In this study, we have identified an autosomal dominant GPR54 mutation - the substitution of proline for arginine at codon 386 (Arg386Pro) - in an adopted girl with idiopathic central precocious puberty (whose biologic family was not available for genetic studies). In vitro studies have shown that this mutation leads to prolonged activation of intracellular signaling pathways in response to kisspeptin. The Arg386Pro mutant appears to be associated with central precocious puberty.