988 resultados para MULTIPLE EXCITON GENERATION
Resumo:
Distributions of halogens (Cl, Br and I) in interstitial waters from sediments containing methane hydrate and in water of the hydrate itself are presented. High concentrations of halogens do not occur in interstitial waters from sediments that contain gas hydrates. The main reason for their low concentrations is the poverty of organic matter in sediments.
Resumo:
Nongenetic inheritance mechanisms such as transgenerational plasticity (TGP) can buffer populations against rapid environmental change such as ocean warming. Yet, little is known about how long these effects persist and whether they are cumulative over generations. Here, we tested for adaptive TGP in response to simulated ocean warming across parental and grandparental generations of marine sticklebacks. Grandparents were acclimated for two months during reproductive conditioning, whereas parents experienced developmental acclimation, allowing us to compare the fitness consequences of short-term vs. prolonged exposure to elevated temperature across multiple generations. We found that reproductive output of F1 adults was primarily determined by maternal developmental temperature, but carry-over effects from grandparental acclimation environments resulted in cumulative negative effects of elevated temperature on hatching success. In very early stages of growth, F2 offspring reached larger sizes in their respective paternal and grandparental environment down the paternal line, suggesting that other factors than just the paternal genome may be transferred between generations. In later growth stages, maternal and maternal granddam environments strongly influenced offspring body size, but in opposing directions, indicating that the mechanism(s) underlying the transfer of environmental information may have differed between acute and developmental acclimation experienced by the two generations. Taken together, our results suggest that the fitness consequences of parental and grandparental TGP are highly context dependent, but will play an important role in mediating some of the impacts of rapid climate change in this system.
Resumo:
Background Many clinical trials of DC-based immunotherapy involve administration of monocyte-derived DCs (Mo-DC) on multiple occasions. We aimed to determine the optimal cell processing procedures and timing (leukapheresis, RBC depletion and cryopreservation) for generation of Mo-DC for clinical purposes. Methods Leukapheresis was undertaken using a COBE Spectra. Two instrument settings were compared - the standard semi-automated software (Version 4.7) (n = 10) and the fully automated software (Version 6.0) (n = 40). Density gradient centrifugation using Ficoll, Percoll, a combination of these methods or neither for RBC depletion were compared. Outcomes (including cell yield and purity) were compared for cryopreserved unmanipulated monocytes and cryopreserved Mo-DC. Results Software Version 6.0 provided significantly better enrichment for monocytes (P
Resumo:
In this thesis, we consider four different scenarios of interest in modern satellite communications. For each scenario, we will propose the use of advanced solutions aimed at increasing the spectral efficiency of the communication links. First, we will investigate the optimization of the current standard for digital video broadcasting. We will increase the symbol rate of the signal and determine the optimal signal bandwidth. We will apply the time packing technique and propose a specifically design constellation. We will then compare some receiver architectures with different performance and complexity. The second scenario still addresses broadcast transmissions, but in a network composed of two satellites. We will compare three alternative transceiver strategies, namely, signals completely overlapped in frequency, frequency division multiplexing, and the Alamouti space-time block code, and, for each technique, we will derive theoretical results on the achievable rates. We will also evaluate the performance of said techniques in three different channel models. The third scenario deals with the application of multiuser detection in multibeam satellite systems. We will analyze a case in which the users are near the edge of the coverage area and, hence, they experience a high level of interference from adjacent cells. Also in this case, three different approaches will be compared. A classical approach in which each beam carries information for a user, a cooperative solution based on time division multiplexing, and the Alamouti scheme. The information theoretical analysis will be followed by the study of practical coded schemes. We will show that the theoretical bounds can be approached by a properly designed code or bit mapping. Finally, we will consider an Earth observation scenario, in which data is generated on the satellite and then transmitted to the ground. We will study two channel models, taking into account one or two transmit antennas, and apply techniques such as time and frequency packing, signal predistortion, multiuser detection and the Alamouti scheme.
Resumo:
The topic of bioenergy, biofuels and bioproducts remains at the top of the current political and research agenda. Identification of the optimum processing routes for biomass, in terms of efficiency, cost, environment and socio-economics is vital as concern grows over the remaining fossil fuel resources, climate change and energy security. It is known that the only renewable way of producing conventional hydrocarbon fuels and organic chemicals is from biomass, but the problem remains of identifying the best product mix and the most efficient way of processing biomass to products. The aim is to move Europe towards a biobased economy and it is widely accepted that biorefineries are key to this development. A methodology was required for the generation and evaluation of biorefinery process chains for converting biomass into one or more valuable products that properly considers performance, cost, environment, socio-economics and other factors that influence the commercial viability of a process. In this thesis a methodology to achieve this objective is described. The completed methodology includes process chain generation, process modelling and subsequent analysis and comparison of results in order to evaluate alternative process routes. A modular structure was chosen to allow greater flexibility and allowing the user to generate a large number of different biorefinery configurations The significance of the approach is that the methodology is defined and is thus rigorous and consistent and may be readily re-examined if circumstances change. There was the requirement for consistency in structure and use, particularly for multiple analyses. It was important that analyses could be quickly and easily carried out to consider, for example, different scales, configurations and product portfolios and so that previous outcomes could be readily reconsidered. The result of the completed methodology is the identification of the most promising biorefinery chains from those considered as part of the European Biosynergy Project.
Resumo:
Serial and parallel interconnection of photonic devices is integral to the construction of any all-optical data processing system. This thesis presents results from a series of experiments centering on the use of the nonlinear-optical loop mirror (NOLM) switch in architectures for the manipulation and generation of ultrashort pulses. Detailed analysis of soliton switching in a single NOLM and cascade of two NOLM's is performed, centering on primary limitations to device operation, effect of cascading on amplitude response, and impact of switching on the characteristics of incident pulses. By using relatively long input pulses, device failure due to stimulated Raman generation is postponed to demonstrate multiple-peaked switching for the first time. It is found that while cascading leads to a sharpening of the overall switching characteristic, pulse spectral and temporal integrity is not significantly degraded, and emerging pulses retain their essential soliton character. In addition, by including an asymmetrically placed in-fibre Bragg reflector as a wavelength selective loss element in the basic NOLM configuration, both soliton self-switching and dual-wavelength control-pulse switching are spectrally quantised. Results are presented from a novel dual-wavelength laser configuration generating pulse trains with an ultra-low rms inter-pulse-stream timing jitter level of 630fs enabling application in ultrafast switching environments at data rates as high as 130GBits/s. In addition, the fibre NOLM is included in architectures for all-optical memory, demonstrating storage and logical inversion of a 0.5kByte random data sequence; and ultrafast phase-locking of a gain-switched distributed feedback laser at 1.062GHz, the fourteenth harmonic of the system baseband frequency. The stringent requirements for environmental robustness of these architectures highlight the primary weaknesses of the NOLM in its fibre form and recommendations to overcome its inherent drawbacks are presented.
Resumo:
Quantum dots (Qdots) are fluorescent nanoparticles that have great potential as detection agents in biological applications. Their optical properties, including photostability and narrow, symmetrical emission bands with large Stokes shifts, and the potential for multiplexing of many different colours, give them significant advantages over traditionally used fluorescent dyes. Here, we report the straightforward generation of stable, covalent quantum dot-protein A/G bioconjugates that will be able to bind to almost any IgG antibody, and therefore can be used in many applications. An additional advantage is that the requirement for a secondary antibody is removed, simplifying experimental design. To demonstrate their use, we show their application in multiplexed western blotting. The sensitivity of Qdot conjugates is found to be superior to fluorescent dyes, and comparable to, or potentially better than, enhanced chemiluminescence. We show a true biological validation using a four-colour multiplexed western blot against a complex cell lysate background, and have significantly improved previously reported non-specific binding of the Qdots to cellular proteins.
Resumo:
The two main objectives of the research work conducted were firstly, to investigate the processing and rheological characteristics of a new generation metallocene catalysed linear low density polyethylene (m-LLDPE), in order to establish the thermal oxidative degradation mechanism, and secondly, to examine the role of selected commercial stabilisers on the melt stability of the polymers. The unstabilised m-LLDPE polymer was extruded (pass I) using a twin screw extruder, at different temperatures (210-285°C) and screw speeds (50-20rpm) and was subjected to multiple extrusions (passes, 2-5) carried out under the same processing conditions used in the first pass. A traditional Ziegler/Natta catalysed linear low density polyethylene (z-LLDPE) produced by the same manufacturer was also subjected to a similar processing regime in order to compare the processability and the oxidative degradation mechanism (s) of the new m-LLDPE with that of the more traditional z-LLDPE. The effect of some of the main extrusion characteristics of the polymers (m-LLDPE and z-LLDPE) on their melt rheological behaviour was investigated by examining their melt flow performance monitored at two fixed low shear rate values, and their rheological behaviour investigated over the entire shear rates experienced during extrusion using a twin-bore capillary rheometer. Capillary rheometric measurements, which determine the viscous and elastic properties of polymers, have shown that both polymers are shear thinning but the m-LLDPE has a higher viscosity than z-LLDPE and the extent of reduction in viscosity of the former when the extrusion temperature was increased from 210°C to 285°C was much higher than in the case of the z-LLDPE polymer. This was supplied by the findings that the m-LLDPE polymer required higher power consumption under all extrusion conditions examined. It was fUliher revealed that the m-LLDPE undergoes a higher extent of melt fracture, the onset of which occurs under much lower shear rates than the Ziegler-based polymer and this was attributed to its higher shear viscosity and narrower molecular weight distribution (MWD). Melt flow measurements and GPC have shown that after the first extrusion pass, the initial narrower MWD of m-LLDPE is retained (compared to z-LLDPE), but upon further multiple extrusion passes it undergoes much faster broadening of its MWD which shifts to higher Mw polymer fractions, paliicularly at the high screw speeds. The MWD of z-LLDPE polymer on the other hand shifts towards the lower Mw end. All the evidence suggest therefore the m-LLDPE undergoes predominantly cross-linking reactions under all processing conditions whereas z-LLDPE undergoes both cross-linking and chain scission reactions with the latter occurring predominantly under more severe processing conditions (higher temperatures and screw speeds, 285°CI200rpm). The stabilisation of both polymers with synergistic combinations of a hindered phenol (Irganox 1076) and a phosphite (Weston 399) at low concentrations has shown a high extent of melt stabilisation in both polymers (extrusion temperatures 210-285°C and screw speeds 50-200rpm). The best Irganox 1076/Weston 399 system was found to be at an optimum 1:4 w/w ratio, respectively and was found to be most effective in the z-LLDPE polymer. The melt stabilising effectiveness of a Vitamin E/Ultranox 626 system used at a fraction of the total concentration of Irganox 1076/Weston 399 system was found to be higher in both polymers (under all extrusion conditions). It was found that AOs which operate primarily as alkyl (Re) radical scavengers are the most effective in inhibiting the thermal oxidative degradation of m-LLDPE in the melt; this polymer was shown to degrade in the melt primarily via alky radicals resulting in crosslinking. Metallocene polymers stabilised with single antioxidants of Irganox HP 136 (a lactone) and Irganox E201 (vitamin E) produced the highest extent of melt stability and the least discolouration during processing (260°C/1 OOrpm). Furthermore, synergistic combinations of Irganox HP I 36/Ultranox 626 (XP-60) system produced very high levels of melt and colour stability (comparable to the Vitamin E based systems) in the mLLDPE polymer. The addition of Irganox 1076 to an Irganox HP 136/Ultranox 626 system was found not to result in increasing melt stability but gave rise to increasing discolouration of the m-LLDPE polymer. The blending of a hydroxylamine (lrgastab FS042) with a lactone and Vitamin E (in combination with a phosphite) did not increase melt stability but induced severe discolouration of resultant polymer samples.
Resumo:
Random number generation is a central component of modern information technology, with crucial applications in ensuring communications and information security. The development of new physical mechanisms suitable to directly generate random bit sequences is thus a subject of intense current research, with particular interest in alloptical techniques suitable for the generation of data sequences with high bit rate. One such promising technique that has received much recent attention is the chaotic semiconductor laser systems producing high quality random output as a result of the intrinsic nonlinear dynamics of its architecture [1]. Here we propose a novel complementary concept of all-optical technique that might dramatically increase the generation rate of random bits by using simultaneously multiple spectral channels with uncorrelated signals - somewhat similar to use of wave-division-multiplexing in communications. We propose to exploit the intrinsic nonlinear dynamics of extreme spectral broadening and supercontinuum (SC) generation in optical fibre, a process known to be often associated with non-deterministic fluctuations [2]. In this paper, we report proof-of concept results indicating that the fluctuations in highly nonlinear fibre SC generation can potentially be used for random number generation.
Resumo:
Generation of stable dual and/or multiple longitudinal modes emitted from a single quantum dot (QD) laser diode (LD) over a broad wavelength range by using volume Bragg gratings (VBG's) in an external cavity setup is reported. The LD operates in both the ground and excited states and the gratings give a dual-mode separation around each emission peak of 5 nm, which is suitable as a continuous wave (CW) optical pump signal for a terahertz (THz) photomixer device. The setup also generates dual modes around both 1180m and 1260 nm simultaneously, giving four simultaneous narrow linewidth modes comprising two simultaneous difference frequency pump signals. (C) 2011 American Institute of Physics.
Resumo:
A new generation of surface plasmonic optical fibre sensors is fabricated using multiple coatings deposited on a lapped section of a single mode fibre. Post-deposition UV laser irradiation using a phase mask produces a nano-scaled surface relief grating structure, resembling nano-wires. The overall length of the individual corrugations is approximately 14 μm with an average full width half maximum of 100 nm. Evidence is presented to show that these surface structures result from material compaction created by the silicon dioxide and germanium layers in the multi-layered coating and the surface topology is capable of supporting localised surface plasmons. The coating compaction induces a strain gradient into the D-shaped optical fibre that generates an asymmetric periodic refractive index profile which enhances the coupling of the light from the core of the fibre to plasmons on the surface of the coating. Experimental data are presented that show changes in spectral characteristics after UV processing and that the performance of the sensors increases from that of their pre-UV irradiation state. The enhanced performance is illustrated with regards to change in external refractive index and demonstrates high spectral sensitivities in gaseous and aqueous index regimes ranging up to 4000 nm/RIU for wavelength and 800 dB/RIU for intensity. The devices generate surface plasmons over a very large wavelength range, (visible to 2 μm) depending on the polarization state of the illuminating light. © 2013 SPIE.
Resumo:
Multiwavelength lasing in the random distributed feedback fiber laser is demonstrated by employing an all fiber Lyot filter. Stable multiwavelength generation is obtained, with each line exhibiting subnanometer line-widths. A flat power distribution over multiple lines is obtained, which indicates that the power between lines is redistributed in nonlinear mixing processes. The multiwavelength generation is observed both in first and second Stokes waves. © 2014 Optical Society of America.
Resumo:
We demonstrate a great variability of single-pulse (with only one pulse/wave-packet traveling along the cavity) generation regimes in fiber lasers passively mode-locked by non-linear polarization evolution (NPE) effect. Combining extensive numerical modeling and experimental studies, we identify multiple very distinct lasing regimes with a rich variety of dynamic behavior and a remarkably broad spread of key parameters (by an order of magnitude and more) of the generated pulses. Such a broad range of variability of possible lasing regimes necessitates developing techniques for control/adjustment of such key pulse parameters as duration, radiation spectrum, and the shape of the auto-correlation function. From a practical view point, availability of pulses/wave-packets with such different characteristics from the same laser makes it imperative to develop variability-aware designs with control techniques and methods to select appropriate application-oriented regimes. © 2014 The Authors.
Resumo:
Aquaporin membrane protein channels mediate cellular water flow. Human aquaporin 5 (AQP5) is highly expressed in the respiratory system and secretory glands where it facilitates the osmotically-driven generation of pulmonary secretions, saliva, sweat and tears. Dysfunctional trafficking of AQP5 has been implicated in several human disease states, including Sjögren’s syndrome, bronchitis and cystic fibrosis. In order to investigate how the plasma membrane expression levels of AQP5 are regulated, we studied real-time translocation of GFP-tagged AQP5 in HEK293 cells. We show that AQP5 plasma membrane abundance in transfected HEK293 cells is rapidly and reversibly regulated by at least three independent mechanisms involving phosphorylation at Ser156, protein kinase A activity and extracellular tonicity. The crystal structure of a Ser156 phosphomimetic mutant indicates that its involvement in regulating AQP5 membrane abundance is not mediated by a conformational change of the carboxy-terminus. We suggest that together these pathways regulate cellular water flow.
Resumo:
We experimentally demonstrate a Raman fiber laser based on multiple point-action fiber Bragg grating reflectors and distributed feedback via Rayleigh scattering in an ∼22-km-long optical fiber. Twenty-two lasing lines with spacing of ∼100 GHz (close to International Telecommunication Union grid) in the C band are generated at the watt level. In contrast to the normal cavity with competition between laser lines, the random distributed feedback cavity exhibits highly stable multiwavelength generation with a power-equalized uniform distribution, which is almost independent on power. © 2011 Optical Society of America.