991 resultados para MOLECULAR EPIDEMIOLOGY
Resumo:
In the first part of this study human immunodeficiency virus type 1 (HIV-1) proviral DNA sequences derived from 201 clones of the C2-V3 env region and the first exon of the tat gene were obtained from six MV-1 infected heterosexual couples. These molecular data were used to confirm the epidemiological relationships. The ability of the molecular data to draw such conclusions was also tested with multiple phylogenetic analyses. The tat region was much more useful in establishing epidemiological relationships than the commonly used C2-V3.^ Subsequently, using nucleotide sequences from the first exon of the Tat gene, we tested the hypothesis that a Florida dentist (a common source) infected five of his patients in the course of dental procedures, against the null hypothesis that the dentist and each individual of the dental group independently acquired the virus within the local community. Multiple phylogenetic analyses demonstrated that the sequences of the five patients were significantly more related to each other than to sequences of the controls. Our results using Tat sequences, combined with envelope sequence data, strongly support a common phylogenetic epidemiological relationship among these five patients.^ A third study is presented, which deals with the effects of genomic variations in drug resistance. HIV-1 reverse transcriptase (RT) mutations were detected in DNA from peripheral blood mononuclear cells from 11 of 12 HIV-infected children after 11-20 months of zidovudine monotherapy. The codon 41/215 mutant combination was associated with general decline in health status. Patients developing the codon 70 mutation tended to have a better health status. ^
Resumo:
Background: Human papillomavirus (HPV) causes cervical cancer and external genital warts. The purpose of this study is to document the genotype distribution of HPV in females aged between 18 and 34 who self-referred to an STI clinic with visible external genital warts (EGW). Scrapings were taken from visible external genital warts (EGW). These scrapings were analysed by PCR for the presence of HPV DNA. Positive samples were then genotyped by means of a commercially available assay (LiPA). A comparison of genotyping results determined by the LiPA assay and direct amplicon DNA sequencing was also performed. Results: Ninety-two patients out of 105 samples (88%) had detectable levels of HPV DNA. The majority of individuals with EGW (66%) showed the presence of two or more genotypes. The most common HPV genotypes present in the study population were HPV-6, HPV-11, HPV-16, HPV-18, HPV-33 and HPV-53. Potential effects of vaccination on HPV molecular epidemiology indicate that 40% of the patients could have been protected from the high risk genotypes HPV-16 and HPV-18.Conclusion: This is the first report of the molecular epidemiology of external genital warts in women aged between 18 and 34 from Ireland based on results from a LiPA assay. The study shows that most individuals are infected with multiple genotypes including those with high oncogenic potential and that the newly available HPV vaccines could have a significant impact on prevalence of the most common HPV genotypes in this study population.
Resumo:
About one third of the world population is infected with tubercle bacilli, causing eight million new cases of tuberculosis (TB) and three million deaths each year. After years of lack of interest in the disease, World Health Organization recently declared TB a global emergency and it is clear that there is need for more efficient national TB programs and newly defined research priorities. A more complete epidemiology of tuberculosis will lead to a better identification of index cases and to a more efficient treatment of the disease. Recently, new molecular tools became available for the identification of strains of Mycobacterium tuberculosis (M. tuberculosis), allowing a better recognition of transmission routes of defined strains. Both a standardized restriction-fragment-length-polymorphism-based methodology for epidemiological studies on a large scale and deoxyribonucleic acids (DNA) amplification-based methods that allow rapid detection of outbreaks with multidrug-resistant (MDR) strains, often characterized by high mortality rates, have been developed. This review comments on the existing methods of DNA-based recognition of M. tuberculosis strains and their peculiarities. It also summarizes literature data on the application of molecular fingerprinting for detection of outbreaks of M. tuberculosis, for identification of index cases, for study of interaction between TB and infection with the human immunodeficiency virus, for analysis of the behavior of MDR strains, for a better understanding of risk factors for transmission of TB within communities and for population-based studies of TB transmission within and between countries
Resumo:
The analysis of genetic data for human immunodeficiency virus type 1 (HIV-1) and human T-cell lymphotropic virus type 1 (HTLV-1) is essential to improve treatment and public health strategies as well as to select strains for vaccine programs. However, the analysis of large quantities of genetic data requires collaborative efforts in bioinformatics, computer biology, molecular biology, evolution, and medical science. The objective of this study was to review and improve the molecular epidemiology of HIV-1 and HTLV-1 viruses isolated in Brazil using bioinformatic tools available in the Laboratório Avançado de Sáude Pública (Lasp) bioinformatics unit. The analysis of HIV-1 isolates confirmed a heterogeneous distribution of the viral genotypes circulating in the country. The Brazilian HIV-1 epidemic is characterized by the presence of multiple subtypes (B, F1, C) and B/F1 recombinant virus while, on the other hand, most of the HTLV-1 sequences were classified as Transcontinental subgroup of the Cosmopolitan subtype. Despite the high variation among HIV-1 subtypes, protein glycosylation and phosphorylation domains were conserved in the pol, gag, and env genes of the Brazilian HIV-1 strains suggesting constraints in the HIV-1 evolution process. As expected, the functional protein sites were highly conservative in the HTLV-1 env gene sequences. Furthermore, the presence of these functional sites in HIV-1 and HTLV-1 strains could help in the development of vaccines that pre-empt the viral escape process.
Resumo:
Marek's disease (MD) is a contagious, lymphoproliferative and neuropathic disease of poultry caused by a ubiquitous lymphotropic and oncogenic virus, Gallid alphaherpesvirus 2 (GaHV-2). MD has been reported in all poultry-rearing countries and is among the viral diseases with the highest economic impact in the poultry industry worldwide, including Italy. MD has been also recognized as one of the leading causes of mortality in backyard poultry. The present doctoral thesis aimed at exploring Marek's disease virus molecular epidemiology in Italian commercial and backyard chicken flocks and, for the first time, in commercial turkeys affected by clinical MD. Molecular biology techniques targeting the full-length meq gene, the major GaHV-2 oncogene, were used to detect and characterize the circulating GaHV-2 strains searching for genetic markers of virulence. A final study focused on the development of rapid, sensitive, and species-specific loop-mediated isothermal amplification assays coupled with a lateral flow device readout for the detection of conventional and recombinant HVT-based vaccines is included in the thesis. HVT vaccines, currently used to protect chickens from MD, are referred to as "leaky", as they do not impede the infection, replication, and shedding of field GaHV-2: vaccinal and field viruses can coexist in the vaccinated host and molecular tests able to discriminate between GaHV-2 and HVT are required. These new simple, fast, and accurate tests for the monitoring of MD vaccination success in the field could be greatly beneficial for field veterinarians, small laboratories, and more broadly for resource-limited settings.
Resumo:
Paracoccidioides brasiliensis infections have been little studied in wild and/or domestic animals, which may represent an important indicator of the presence of the pathogen in nature. Road-killed wild animals have been used for surveillance of vectors of zoonotic pathogens and may offer new opportunities for eco-epidemiological studies of paracoccidiodomycosis (PCM). The presence of P. brasiliensis infection was evaluated by Nested-PCR in tissue samples collected from 19 road-killed animals; 3 Cavia aperea (guinea pig), 5 Cerdocyon thous (crab-eating-fox), 1 Dasypus novemcinctus (nine-banded armadillo), 1 Dasypus septemcinctus (seven-banded armadillo), 2 Didelphis albiventris (white-eared opossum), 1 Eira barbara (tayra), 2 Gallictis vittata (grison), 2 Procyon cancrivorus (raccoon) and 2 Sphiggurus spinosus (porcupine). Specific P. brasiliensis amplicons were detected in (a) several organs of the two armadillos and one guinea pig, (b) the lung and liver of the porcupine, and (c) the lungs of raccoons and grisons. P. brasiliensis infection in wild animals from endemic areas might be more common than initially postulated. Molecular techniques can be used for detecting new hosts and mapping `hot spot` areas of PCM.
Resumo:
Respiratory syncytial virus (RSV) is recognized as the leading cause of nosocomial respiratory infection among hematopoietic stem cell transplant (HSCT) recipients, causing considerable morbidity and mortality. RSV is easily transmitted by contact with contaminated surfaces, and in HSCT units, more than 50% of RSV infections have been characterized as of nosocomial origin. From April 2001 to October 2002, RSV was identified by direct immunofluorescent assay in 42 symptomatic HSCT recipients. Seven RSV strains from 2001 and 12 RSV strains from 2002 were sequenced. RNA extraction, cDNA synthesis, and seminested polymerase chain reaction (PCR) with primers complementary to RSV genes G and F were pet-formed. PCR products were analyzed by nucleotide sequencing of the C-terminal region of gene G for typing (in group A or B). Of the 7 strains analyzed in 2001, only 2 belonged to group B; the other 5 belonged to group A. Of these 7 strains, 3 were identical and were from recipients receiving outpatient care. In 2002, of the 12 strains analyzed, 3 belonged to group A and the other 9 belonged to group B. Of these 9 strains, 7 were genetically identical and were also from recipients receiving outpatient care. Therefore, multiple strains of RSV cocirculated in the hematopoietic stem cell transplant units (ward and outpatient units) between 2001 and 2002. Nosocomial transmission was more likely to occur at the HSCT outpatient unit than in the HSCT ward. Infection control practices should also be implemented in the outpatient setting.
Resumo:
Clinical and environmental samples from Portugal were screened for the presence of Aspergillus and the distributions of the species complexes were determined in order to understand how their distributions differ based on their source. Fifty-seven Aspergillus isolates from clinical samples were collected from 10 health institutions. Six species complexes were detected by internal transcribed spacer sequencing; Fumigati, Flavi, and Nigri were found most frequently (50.9%, 21.0%, and 15.8%, respectively). β-tubulin and calmodulin sequencing resulted in seven cryptic species (A. awamorii, A. brasiliensis, A. fructus, A. lentulus, A. sydowii, A. tubingensis, Emericella echinulata) being identified among the 57 isolates. Thirty-nine isolates of Aspergillus were recovered from beach sand and poultry farms, 31 from swine farms, and 80 from hospital environments, for a total 189 isolates. Eleven species complexes were found in these 189 isolates, and those belonging to the Versicolores species complex were found most frequently (23.8%). There was a significant association between the different environmental sources and distribution of the species complexes; the hospital environment had greater variability of species complexes than other environmental locations. A high prevalence of cryptic species within the Circumdati complex was detected in several environments; from the isolates analyzed, at least four cryptic species were identified, most of them growing at 37ºC. Because Aspergillus species complexes have different susceptibilities to antifungals, knowing the species-complex epidemiology for each setting, as well as the identification of cryptic species among the collected clinical isolates, is important. This may allow preventive and corrective measures to be taken, which may result in decreased exposure to those organisms and a better prognosis.
Resumo:
Strain typing is a critical tool for molecular epidemiological analysis and can provide important information about the spread of dengue viruses. Here, we performed a molecular characterization of DEN-2 viruses isolated in Brazil during 1990-2000 from geographically and temporally distinct areas in order to investigate the genetic distribution of this serotype circulating in the country. Restriction site-specific polymerase chain reaction (RSS)-PCR presented the same pattern for all 52 Brazilian samples, showing the circulation of just one DEN-2 variant. Phylogenetic analysis using progressive pairwise alignments from 240-nucleotide sequences of the E/NS1 junction in 15 isolates showed that they belong to genotype III (Jamaica genotype).
Resumo:
Blood samples from native Indians in the Kararao village (Kayapo), were analysed using serological and molecular methods to characterize infection and analyse transmission of HTLV-II. Specific reactivity was observed in 3/26 individuals, of which two samples were from a mother and child. RFLP analysis of the pX and env regions confirmed HTLV-II infection. Nucleotide sequence of the 5' LTR segment and phylogenetic analysis showed a high similarity (98%) between the three samples and prototype HTLV-IIa (Mot), and confirmed the occurrence of the HTLV-IIc subtype. There was a high genetic similarity (99.9%) between the mother and child samples and the only difference was a deletion of two nucleotides (TC) in the mother sequence. Previous epidemiological studies among native Indians from Brazil have provided evidence of intrafamilial and vertical transmission of HTLV-IIc. The present study now provides molecular evidence of mother-to-child transmission of HTLV-IIc, a mechanism that is in large part responsible for the endemicity of HTLV in these relatively closed populations. Although the actual route of transmission is unknown, breast feeding would appear to be most likely.
Resumo:
Pulsed-field gel electrophoresis (PFGE) is widely used for epidemic investigations of methicillin-resistant Staphylococcus aureus (MRSA). In the present study, we evaluated its use in a long-term epidemiological setting (years to few decades, country to continent level). The clustering obtained from PFGE patterns after SmaI digestion of the DNA of 20 strains was compared to that obtained using a phylogenetic typing method (multiprimer RAPD). The results showed that the analysis of small PFGE bands (10-85kb) correlates better with multiprimer RAPD than the analysis of large PFGE bands (>85-700kb), suggesting that the analysis of small bands would be more suitable for the investigation of long-term epidemiological setting. However, given the technical difficulties to obtain a good resolution of these bands and the putative presence of plasmids among them, PFGE does not appear to be a method of choice for the long-term epidemiology analysis of MRSA.
Resumo:
The present work evaluated the epidemiology of human immunodeficiency virus 1/human T-cell lymphotropic virus (HIV-1/HTLV) coinfection in patients living in Belém (state of Pará) and Macapá (state of Amapá), two cities located in the Amazon region of Brazil. A total of 169 blood samples were collected. The sera were tested by enzyme-linked immunosorbent assay to determine the presence of antibodies anti-HTLV-1/2. Confirmation of infection and discrimination of HTLV types and subtypes was performed using a nested polymerase chain reaction targeting the pX and 5' LTR regions, followed by restriction fragment length polymorphism and sequencing analysis. The presence of anti-HTLV1/2 was detected in six patients from Belém. The amplification of the pX region followed by RFLP analysis, demonstrated the presence of HTLV-1 and HTLV-2 infections among two and four patients, respectively. Sequencing HTLV-1 5' LTR indicated that the virus is a member of the Cosmopolitan Group, Transcontinental subgroup. HTLV-2 strains isolated revealed a molecular profile of subtype HTLV-2c. These results are a reflex of the epidemiological features of HIV-1/HTLV-1/2 coinfection in the North region of Brazil, which is distinct from other Brazilian regions, as reported by previous studies.
Resumo:
We recently performed a molecular epidemiology survey of human immunodeficiency virus type 1 (HIV-1) infection in Miracema, a small city in Southeast Brazil, and found multiple monophyletic clusters, consistent with independent introductions and spread of different viral lineages in the city. Here we apply Bayesian coalescent-based methods to the two largest subtype B clusters and estimate that the most recent common ancestors that gave rise to these two transmission chains were in circulation around 1991-1992. The finding that HIV-1 spread in this Brazilian small city was already taking place at a time Aids was considered a problem restricted to large urban centers may have important public health implications.
Resumo:
The aim of the present study was to detect natural infection by Leishmania (Leishmania) infantum in Lutzomyia longipalpis captured in Barcarena, state of Pará, Brazil, through the use of three primer sets. With this approach, it is unnecessary to previously dissect the sandfly specimens. DNA of 280 Lu. longipalpis female specimens were extracted from the whole insects. PCR primers for kinetoplast minicircle DNA (kDNA), the mini-exon gene and the small subunit ribosomal RNA (SSU-rRNA) gene of Leishmania were used, generating fragments of 400 bp, 780 bp and 603 bp, respectively. Infection by the parasite was found with the kDNA primer in 8.6% of the cases, with the mini-exon gene primer in 7.1% of the cases and with the SSU-rRNA gene primer in 5.3% of the cases. These data show the importance of polymerase chain reaction as a tool for investigating the molecular epidemiology of visceral leishmaniasis by estimating the risk of disease transmission in endemic areas, with the kDNA primer representing the most reliable marker for the parasite.