994 resultados para ML Flow


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neste trabalho é proposto um fotômetro baseado em LED (diodo emissor de luz) para fotometria em fase sólida. O fotômetro foi desenvolvido para permitir o acoplamento da fonte de radiação (LED) e do fotodetector direto na cela de fluxo, tendo um caminho óptico de 4 mm. A cela de fluxo foi preenchida com material sólido (C18), o qual foi utilizado para imobilizar o reagente cromogênico 1-(2-tiazolilazo)-2-naftol (TAN). A exatidão foi avaliada empregando dados obtidos através da técnica ICP OES (espectrometria de emissão por plasma indutivamente acoplado). Aplicando-se o teste-t pareado não foi observada diferença significativa em nível de confiança de 95%. Outros parâmetros importantes encontrados foram faixa de resposta linear de 0,05 a 0,85 mg L-1 Zn, limite de detecção de 9 µg L-1 Zn (n = 3), desvio padrão de 1,4 % (n = 10), frequência de amostragem de 36 determinações por h, e uma geração de efluente e consumo de reagente de 1,7 mL e 0,03 µg por determinação, respectivamente.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] A universal O2 sensor presumes that compensation for impaired O2 delivery is triggered by low O2 tension, but in humans, comparisons of compensatory responses to altered arterial O2 content (CaO2) or tension (PaO2) have not been reported. To directly compare cardiac output (QTOT) and leg blood flow (LBF) responses to a range of CaO2 and PaO2, seven healthy young men were studied during two-legged knee extension exercise with control hemoglobin concentration ([Hb] = 144.4 +/- 4 g/l) and at least 1 wk later after isovolemic hemodilution ([Hb] = 115 +/- 2 g/l). On each study day, subjects exercised twice at 30 W and on to voluntary exhaustion with an FIO2 of 0.21 or 0.11. The interventions resulted in two conditions with matched CaO2 but markedly different PaO2 (hypoxia and anemia) and two conditions with matched PaO2 and different CaO2 (hypoxia and anemia + hypoxia). PaO2 varied from 46 +/- 3 Torr in hypoxia to 95 +/- 3 Torr (range 37 to >100) in anemia (P < 0.001), yet LBF at exercise was nearly identical. However, as CaO2 dropped from 190 +/- 5 ml/l in control to 132 +/- 2 ml/l in anemia + hypoxia (P < 0.001), QTOT and LBF at 30 W rose to 12.8 +/- 0.8 and 7.2 +/- 0.3 l/min, respectively, values 23 and 47% above control (P < 0.01). Thus regulation of QTOT, LBF, and arterial O2 delivery to contracting intact human skeletal muscle is dependent for signaling primarily on CaO2, not PaO2. This finding suggests that factors related to CaO2 or [Hb] may play an important role in the regulation of blood flow during exercise in humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An implantable transducer for monitoring the flow of Cerebrospinal fluid (CSF) for the treatment of hydrocephalus has been developed which is based on measuring the heat dissipation of a local thermal source. The transducer uses passive telemetry at 13.56 MHz for power supply and read out of the measured flow rate. The in vitro performance of the transducer has been characterized using artificial Cerebrospinal Fluid (CSF) with increased protein concentration and artificial CSF with 10\% fresh blood. After fresh blood was added to the artificial CSF a reduction of flow rate has been observed in case that the sensitive surface of the flow sensor is close to the sedimented erythrocytes. An increase of flow rate has been observed in case that the sensitive surface is in contact with the remaining plasma/artificial CSF mix above the sediment which can be explained by an asymmetric flow profile caused by the sedimentation of erythrocythes having increased viscosity compared to artificial CSF. After removal of blood from artificial CSF, no drift could be observed in the transducer measurement which could be associated to a deposition of proteins at the sensitive surface walls of the packaged flow transducer. The flow sensor specification requirement of +-10\% for a flow range between 2 ml/h and 40 ml/h. could be confirmed at test conditions of 37 degrees C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A consequence in patients with d-transposition of the great arteries (d-TGA) and tetralogy of Fallot (TOF) is right ventricular hypertrophy (RVH) and right ventricular failure. Myocardial contrast echocardiography (MCE) permits the determination of the myocardial microvascular density reflected by the relative myocardial blood volume (rBV; ml/ml). This study was conducted to elucidate the relationship between RVH and myocardial microvascular changes by quantitative MCE in patients with d-TGA and TOF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insufficient cardiac preload and impaired contractility are frequent in early sepsis. We explored the effects of acute cardiac preload reduction and dobutamine on hepatic arterial (Qha) and portal venous (Qpv) blood flows during endotoxin infusion. We hypothesized that the hepatic arterial buffer response (HABR) is absent during preload reduction and reduced by dobutamine. In anesthetized pigs, endotoxin or vehicle (n = 12, each) was randomly infused for 18 h. HABR was tested sequentially by constricting superior mesenteric artery (SMA) or inferior vena cava (IVC). Afterward, dobutamine at 2.5, 5.0, and 10.0 μg/kg per minute or another vehicle (n = 6, each) was randomly administered in endotoxemic and control animals, and SMA was constricted during each dose. Systemic (cardiac output, thermodilution) and carotid, splanchnic, and renal blood flows (ultrasound Doppler) and blood pressures were measured before and during administration of each dobutamine dose. HABR was expressed as hepatic arterial pressure/flow ratio. Compared with controls, 18 h of endotoxin infusion was associated with decreased mean arterial blood pressure [49 ± 11 mmHg vs. 58 ± 8 mmHg (mean ± SD); P = 0.034], decreased renal blood flow, metabolic acidosis, and impaired HABR during SMA constriction [0.32 (0.18-1.32) mmHg/ml vs. 0.22 (0.08-0.60) mmHg/ml; P = 0.043]. IVC constriction resulted in decreased Qpv in both groups; whereas Qha remained unchanged in controls, it decreased after 18 h of endotoxemia (P = 0.031; constriction-time-group interaction). One control and four endotoxemic animals died during the subsequent 6 h. The maximal increase of cardiac output during dobutamine infusion was 47% (22-134%) in controls vs. 53% (37-85%) in endotoxemic animals. The maximal Qpv increase was significant only in controls [24% (12-47%) of baseline (P = 0.043) vs. 17% (-7-32%) in endotoxemia (P = 0.109)]. Dobutamine influenced neither Qha nor HABR. Our data suggest that acute cardiac preload reduction is associated with preferential hepatic arterial perfusion initially but not after established endotoxemia. Dobutamine had no effect on the HABR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We hypothesized that fluid administration may increase regional splanchnic perfusion after abdominal surgery-even in the absence of a cardiac stroke volume (SV) increase and independent of accompanying endotoxemia. Sixteen anesthetized pigs underwent abdominal surgery with flow probe fitting around splanchnic vessels and carotid arteries. They were randomized to continuous placebo or endotoxin infusion, and when clinical signs of hypovolemia (mean arterial pressure, <60 mmHg; heart rate, >100 beats · min(-1); urine production, <0.5 mL · kg(-1) · h(-1); arterial lactate concentration, >2 mmol · L(-1)) and/or low pulmonary artery occlusion pressure (target 5-8 mmHg) were present, they received repeated boli of colloids (50 mL) as long as SV increased 10% or greater. Stroke volume and regional blood flows were monitored 2 min before and 30 min after fluid challenges. Of 132 fluid challenges, 45 (34%) resulted in an SV increase of 10% or greater, whereas 82 (62%) resulted in an increase of 10% or greater in one or more of the abdominal flows (P < 0.001). During blood flow redistribution, celiac trunk (19% of all measurements) and hepatic artery flow (15%) most often decreased, whereas portal vein (10%) and carotid artery (7%) flow decreased less frequently (P = 0.015, between regions). In control animals, celiac trunk (30% vs. 9%, P = 0.004) and hepatic artery (25% vs. 11%, P = 0.040) flow decreased more often than in endotoxin-infused pigs. Accordingly, blood flow redistribution is a common phenomenon in the postoperative period and is only marginally influenced by endotoxemia. Fluid management based on SV changes may not be useful for improving regional abdominal perfusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS: Myocardial blood flow (MBF) is the gold standard to assess myocardial blood supply and, as recently shown, can be obtained by myocardial contrast echocardiography (MCE). The aims of this human study are (i) to test whether measurements of collateral-derived MBF by MCE are feasible during elective angioplasty and (ii) to validate the concept of pressure-derived collateral-flow assessment. METHODS AND RESULTS: Thirty patients with stable coronary artery disease underwent MCE of the collateral-receiving territory during and after angioplasty of 37 stenoses. MCE perfusion analysis was successful in 32 cases. MBF during and after angioplasty varied between 0.060-0.876 mL min(-1) g(-1) (0.304+/-0.196 mL min(-1) g(-1)) and 0.676-1.773 mL min(-1) g(-1) (1.207+/-0.327 mL min(-1) g(-1)), respectively. Collateral-perfusion index (CPI) is defined as the rate of MBF during and after angioplasty varied between 0.05 and 0.67 (0.26+/-0.15). During angioplasty, simultaneous measurements of mean aortic pressure, coronary wedge pressure, and central venous pressure determined the pressure-derived collateral-flow index (CFI(p)), which varied between 0.04 and 0.61 (0.23+/-0.14). Linear-regression analysis demonstrated an excellent agreement between CFI(p) and CPI (y=0.88 x +0.01; r(2)=0.92; P<0.0001). CONCLUSION: Collateral-derived MBF measurements by MCE during angioplasty are feasible and proved that the pressure-derived CFI exactly reflects collateral relative to normal myocardial perfusion in humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: The objective was to study the effects of a lung recruitment procedure by stepwise increases of mean airway pressure upon organ blood flow and hemodynamics during high-frequency oscillatory ventilation (HFOV) versus pressure-controlled ventilation (PCV) in experimental lung injury. METHODS: Lung damage was induced by repeated lung lavages in seven anesthetized pigs (23-26 kg). In randomized order, HFOV and PCV were performed with a fixed sequence of mean airway pressure increases (20, 25, and 30 mbar every 30 minutes). The transpulmonary pressure, systemic hemodynamics, intracranial pressure, cerebral perfusion pressure, organ blood flow (fluorescent microspheres), arterial and mixed venous blood gases, and calculated pulmonary shunt were determined at each mean airway pressure setting. RESULTS: The transpulmonary pressure increased during lung recruitment (HFOV, from 15 +/- 3 mbar to 22 +/- 2 mbar, P < 0.05; PCV, from 15 +/- 3 mbar to 23 +/- 2 mbar, P < 0.05), and high airway pressures resulted in elevated left ventricular end-diastolic pressure (HFOV, from 3 +/- 1 mmHg to 6 +/- 3 mmHg, P < 0.05; PCV, from 2 +/- 1 mmHg to 7 +/- 3 mmHg, P < 0.05), pulmonary artery occlusion pressure (HFOV, from 12 +/- 2 mmHg to 16 +/- 2 mmHg, P < 0.05; PCV, from 13 +/- 2 mmHg to 15 +/- 2 mmHg, P < 0.05), and intracranial pressure (HFOV, from 14 +/- 2 mmHg to 16 +/- 2 mmHg, P < 0.05; PCV, from 15 +/- 3 mmHg to 17 +/- 2 mmHg, P < 0.05). Simultaneously, the mean arterial pressure (HFOV, from 89 +/- 7 mmHg to 79 +/- 9 mmHg, P < 0.05; PCV, from 91 +/- 8 mmHg to 81 +/- 8 mmHg, P < 0.05), cardiac output (HFOV, from 3.9 +/- 0.4 l/minute to 3.5 +/- 0.3 l/minute, P < 0.05; PCV, from 3.8 +/- 0.6 l/minute to 3.4 +/- 0.3 l/minute, P < 0.05), and stroke volume (HFOV, from 32 +/- 7 ml to 28 +/- 5 ml, P < 0.05; PCV, from 31 +/- 2 ml to 26 +/- 4 ml, P < 0.05) decreased. Blood flows to the heart, brain, kidneys and jejunum were maintained. Oxygenation improved and the pulmonary shunt fraction decreased below 10% (HFOV, P < 0.05; PCV, P < 0.05). We detected no differences between HFOV and PCV at comparable transpulmonary pressures. CONCLUSION: A typical recruitment procedure at the initiation of HFOV improved oxygenation but also decreased systemic hemodynamics at high transpulmonary pressures when no changes of vasoactive drugs and fluid management were performed. Blood flow to the organs was not affected during lung recruitment. These effects were independent of the ventilator mode applied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: In humans, it is not known whether physical endurance exercise training promotes coronary collateral growth. The following hypotheses were tested: the expected collateral flow reduction after percutaneous coronary intervention of a stenotic lesion is prevented by endurance exercise training; collateral flow supplied to an angiographically normal coronary artery improves in response to exercise training; there is a direct relationship between the change of fitness after training and the coronary collateral flow change. METHODS AND RESULTS: Forty patients (age 61+/-8 years) underwent a 3-month endurance exercise training program with baseline and follow-up assessments of coronary collateral flow. Patients were divided into an exercise training group (n=24) and a sedentary group (n=16) according to the fact whether they adhered or not to the prescribed exercise program, and whether or not they showed increased endurance (VO2max in ml/min per kg) and performance (W/kg) during follow-up versus baseline bicycle spiroergometry. Collateral flow index (no unit) was obtained using pressure sensor guidewires positioned in the coronary artery undergoing percutaneous coronary intervention and in a normal vessel. In the vessel initially undergoing percutaneous coronary intervention, there was an increase in collateral flow index among exercising but not sedentary patients from 0.155+/-0.081 to 0.204+/-0.056 (P=0.03) and from 0.189+/-0.084 to 0.212+/-0.077 (NS), respectively. In the normal vessel, collateral flow index changes were from 0.176+/-0.075 to 0.227+/-0.070 in the exercise group (P=0.0002), and from 0.219+/-0.103 to 0.238+/-0.086 in the sedentary group (NS). A direct correlation existed between the change in collateral flow index from baseline to follow-up and the respective alteration of VO2max (P=0.007) and Watt (P=0.03). CONCLUSION: A 3-month endurance exercise training program augments coronary collateral supply to normal vessels, and even to previously stenotic arteries having undergone percutaneous coronary intervention before initiating the program. There appears to be a dose-response relation between coronary collateral flow augmentation and exercise capacity gained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By using an infant rat model of pneumococcal meningitis, we determined whether endothelins contribute to neuronal damage in this disease. Cerebrospinal fluid analysis demonstrated a significant increase of endothelin-1 in infected animals compared with uninfected controls. Histopathological examination 24 hours after infection showed brain damage in animals treated with ceftriaxone alone (median, 9.2% of cortex; range, 0-49.1%). In infected animals treated intraperitoneally with the endothelin antagonist bosentan (30 mg/kg, every 12 hours) also, injury was reduced to 0.5% (range, 0-8.6%) of cortex. Cerebral blood flow was reduced in infected animals (6.5 +/- 4.0 ml/min/100 g of brain vs 14.9 +/- 9.1 ml/min/100 g in controls. Treatment with bosentan restored cerebral blood flow to levels similar to controls (12.8 +/- 5.3 ml/min/100 g). Improved blood flow was not mediated by nitric oxide production, because bosentan had no effect on cerebrospinal fluid or plasma nitrite/nitrate concentrations at 6, 12, or 18 hours. These data indicate that endothelins contribute to neuronal injury in this model of pneumococcal meningitis by causing cerebral ischemia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of hydration status on cerebral blood flow (CBF) and development of cerebrospinal fluid (CSF) lactic acidosis were evaluated in rabbits with experimental pneumococcal meningitis. As loss of cerebrovascular autoregulation has been previously demonstrated in this model, we reasoned that compromise of intravascular volume might severely affect cerebral perfusion. Furthermore, as acute exacerbation of the inflammatory response in the subarachnoid space has been observed after antibiotic therapy, animals were studied not only while meningitis evolved, but also 4-6 h after treatment with antibiotics to determine whether there would also be an effect on CBF. To produce different levels of hydration, animals were given either 50 ml/kg per 24 h of normal saline ("low fluid") or 150 ml/kg 24 h ("high fluid"). After 16 h of infection, rabbits that were given the lower fluid regimen had lower mean arterial blood pressure (MABP), lower CBF, and higher CSF lactate compared with animals that received the higher fluid regimen. In the first 4-6 h after antibiotic administration, low fluid rabbits had a significant decrease in MABP and CBF compared with, and a significantly greater increase in CSF lactate concentration than, high fluid rabbits. This study suggests that intravascular volume status may be a critical variable in determining CBF and therefore the degree of cerebral ischemia in meningitis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Peripheral arterial disease (PAD) is associated with systemic impaired flow-mediated dilation (FMD) and increased risk for cardiovascular events. Decreased FMD may be caused by a decrease in arterial shear stress due to claudication and inflammation due to muscle ischemia and reperfusion. We assumed that endovascular revascularization of lower limb arterial obstructions ameliorates FMD and lowers inflammation through improvement of peripheral perfusion. METHODS: The study was a prospective, open, randomized, controlled, single-center follow-up evaluation assessing the effect of endovascular revascularization on brachial artery reactivity (FMD) measured by ultrasound, white blood cell (WBC) count, high-sensitive C-reactive protein (hs-CRP), and fibrinogen. We investigated 33 patients (23 men) with chronic and stable PAD (Rutherford 2 to 3) due to femoropopliteal obstruction. Variables were assessed at baseline and after 4 weeks in 17 patients (group A) who underwent endovascular revascularization and best medical treatment, and in 16 patients (group B) who received best medical treatment only. RESULTS: FMD did not differ between group A and B (4.96% +/- 1.86% vs 4.60% +/- 2.95%; P = .87) at baseline. It significantly improved after revascularization in group A (6.44% +/- 2.88%; P = .02) compared with group B at 4 weeks of follow-up (4.53% +/- 3.17%; P = .92), where it remained unchanged. The baseline ankle-brachial index (ABI) was similar for group A and B (0.63 +/- 0.15 vs 0.66 +/- 0.10; P = .36). At 4 weeks of follow-up, ABI was significantly increased in group A (1.05 +/- 0.15; P = .0004) but remained unchanged in group B (0.62 +/- 0.1). WBC counts of the two groups were comparable at baseline (group A: 7.6 +/- 2.26 x 10(6)/mL and group B: 7.8 +/- 2.02 x 10(6)/mL, P = .81). In group A, the leukocyte count significantly decreased after angioplasty from 7.6 +/- 2.26 to 6.89 +/- 1.35 x 10(6)/mL (P = .03). For group B, WBC count did not differ significantly compared with baseline (7.76 +/- 2.64 x 10(6)/mL; P = .94). No effects were observed on hs-CRP or fibrinogen from endovascular therapy. CONCLUSION: Endovascular revascularization with reestablishment of peripheral arterial perfusion improves FMD and reduces WBC count in patients with claudication. Revascularization may therefore have clinical implications beyond relief of symptoms, for example, reducing oxidative stress caused by repeated muscle ischemia or increased shear stress due to improved ambulatory activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM: To test whether quantitative stress echocardiography using contrast-based myocardial blood flow (MBF, ml x min(-1) x g(-1)) measurements can detect coronary artery disease in humans. METHODS: 48 patients eligible for pharmacological stress testing by myocardial contrast echocardiography (MCE) and willing to undergo subsequent coronary angiography were prospectively enrolled in the study. Baseline and adenosine-induced (140 microg x kg(-1) x min(-1)) hyperaemic MBF was analysed according to a three-coronary-artery-territory model. Vascular territories were categorised into three groups with increasing stenosis severity defined as percentage diameter reduction by quantitative coronary angiography. RESULTS: Myocardial blood flow reserve (MBFR)-that is, the ratio of hyperaemic to baseline MBF, was obtained in 128 (89%) territories. Mean (SD) baseline MBF was 1.073 (0.395) ml x min(-1) x g(-1) and did not differ between territories supplied by coronary arteries with mild (<50% stenosis), moderate (50%-74% stenosis) or severe (>or=75% stenosis) disease. Mean (SD) hyperaemic MBF and MBFR were 2.509 (1.078) ml x min(-1) x g(-1) and 2.54 (1.03), respectively, and decreased linearly (r2 = 0.21 and r2 = 0.39) with stenosis severity. ROC analysis revealed that a territorial MBFR <1.94 detected >or=50% stenosis with 89% sensitivity and 92% specificity. CONCLUSION: Quantitative stress testing based on MBF measurements derived from contrast echocardiography is a new method for the non-invasive and reliable assessment of coronary artery disease in humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intracerebral contusions can lead to regional ischemia caused by extensive release of excitotoxic aminoacids leading to increased cytotoxic brain edema and raised intracranial pressure. rCBF measurements might provide further information about the risk of ischemia within and around contusions. Therefore, the aim of the presented study was to compare the intra- and perilesional rCBF of hemorrhagic, non-hemorrhagic and mixed intracerebral contusions. In 44 patients, 60 stable Xenon-enhanced CT CBF-studies were performed (EtCO2 30 +/- 4 mmHg SD), initially 29 hours (39 studies) and subsequent 95 hours after injury (21 studies). All lesions were classified according to localization and lesion type using CT/MRI scans. The rCBF was calculated within and 1-cm adjacent to each lesion in CT-isodens brain. The rCBF within all contusions (n = 100) of 29 +/- 11 ml/100 g/min was significantly lower (p < 0.0001, Mann-Whitney U) compared to perilesional rCBF of 44 +/- 12 ml/100 g/min and intra/perilesional correlation was 0.4 (p < 0.0005). Hemorrhagic contusions showed an intra/perilesional rCBF of 31 +/- 11/44 +/- 13 ml/100 g/min (p < 0.005), non-hemorrhagic contusions 35 +/- 13/46 +/- 10 ml/100 g/min (p < 0.01). rCBF in mixed contusions (25 +/- 9/44 +/- 12 ml/100 g/min, p < 0.0001) was significantly lower compared to hemorrhagic and non-hemorrhagic contusions (p < 0.02). Intracontusional rCBF is significantly reduced to 29 +/- 11 ml/100 g/min but reduced below ischemic levels of 18 ml/100 g/min in only 16% of all contusions. Perilesional CBF in CT normal appearing brain closed to contusions is not critically reduced. Further differentiation of contusions demonstrates significantly lower rCBF in mixed contusions (defined by both hyper- and hypodense areas in the CT-scan) compared to hemorrhagic and non-hemorrhagic contusions. Mixed contusions may evolve from hemorrhagic contusions with secondary increased perilesional cytotoxic brain edema leading to reduced cerebral blood flow and altered brain metabolism. Therefore, the treatment of ICP might be individually modified by the measurement of intra- and pericontusional cerebral blood.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Assessment of regional blood flow changes is difficult in the clinical setting. We tested whether conventional pulmonary artery catheters (PACs) can be used to measure regional venous blood flows by inverse thermodilution (ITD). Inverse thermodilution was tested in vitro and in vivo using perivascular ultrasound Doppler (USD) flow probes as a reference. In anesthetized pigs, PACs were inserted in jugular, hepatic, renal, and femoral veins, and their measurements were compared with simultaneous USD flow measurements from carotid, hepatic, renal, and femoral arteries and from portal vein. Fluid boluses were injected through the PAC's distal port, and temperature changes were recorded from the proximally located thermistor. Injectates of 2 and 5 mL at 22 degrees C and 4 degrees C were used. Flows were altered by using a roller pump (in vitro), and infusion of dobutamine and induction of cardiac tamponade, respectively. In vitro: At blood flows between 400 mL . min-1 and 700 mL . min-1 (n = 50), ITD and USD correlated well (r = 0.86, P < 0.0001), with bias and limits of agreement of 3 +/- 101 mL . min-1. In vivo: 514 pairs of measurements had to be excluded from analysis for technical reasons, and 976 were analyzed. Best correlations were r = 0.87 (P < 0.0001) for renal flow and r = 0.46 (P < 0.0001) for hepatic flow. No significant correlation was found for cerebral and femoral flows. Inverse thermodilution using conventional PAC compared moderately well with USD for renal but not for other flows despite good in vitro correlation in various conditions. In addition, this method has significant technical limitations.