811 resultados para MITOCHONDRIAL DYSFUNCTION


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Infection of young poults with turkey coronavirus (TCoV) produces a syndrome characterized by acute enteritis, diarrhea, anorexia, ruffled feathers, decreased body weight gain and uneven flock growth. The objective of this study was to standardize an intestinal organ culture (IOC) in order to assess host-virus interaction related to apoptosis. For this purpose the Brazilian strain (TCoV/Brazil/2006 with GenBank accession number FJ188401), was used for infection. Infected IOC cells had mitochondrial dysfunction and initial nuclear activation with MTT value of 90.7 (± 2.4) and apoptotic factor 2.21 (± 2.1), considered statistically different from uninfected IOC cells (p > 0.05). The kinetics of TCoV antigens and viral RNA was directly correlated to annexin-V, caspases- 2 and -3, p53, BCl-2 antigens at 24, 72 and 96 h post-infection (p.i.). Morphological and biochemical features of apoptosis, such as in situ nuclear fragmentation (TUNEL and annexin-V) and DNA ladder formation were also detected in infected cells at all assayed p.i. intervals. Moreover, different from other coronaviruses, the expression of both effective caspase-2 and - 3 and p53 antigens were considered lower. However, at all p.i., the BCl-2 antigens were expressed quantitatively and qualitatively as viral antigen measured by immunofluorescence microscopy analysis. Because the diagnosis of TCoV infection is only performed by infecting embryonated poult eggs, the pathological characteri tics related to host-virus interaction remain unclear. This is the first report on apoptosis of TCoV infected IOC, and reveals that it may be useful immunological method to assess virus pathogenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fatty acids are the main substrates used by mitochondria to provide myocardial energy under normal conditions. During heart remodeling, however, the fuel preference switches to glucose. In the earlier stages of cardiac remodeling, changes in energy metabolism are considered crucial to protect the heart from irreversible damage. Furthermore, low fatty acid oxidation and the stimulus for glycolytic pathway lead to lipotoxicity, acidosis, and low adenosine triphosphate production. While myocardial function is directly associated with energy metabolism, the metabolic pathways could be potential targets for therapy in heart failure. © 2013 by Lippincott Williams & Wilkins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A doença de Parkinson (DP) é a segunda doença neurodegenerativa mais comum em idosos, caracterizada pela neurodegeneração de neurônios dopaminérgicos da substância negra (SN), com etiologia não claramente estabelecida, entretanto as causas podem estar associadas a exposição de toxinas ambientais e fatores genéticos. Os processos patológicos envolvidos na DP são disfunção mitocondrial, estresse oxidativo, inflamação e excitotoxicidade. A sintomatologia da DP são alterações motoras, cognitivas e autonômicas. Contudo, poucos estudos analisam os sintomas não-motores da DP, principalmente em modelos animais. Nesse contexto o objetivo deste trabalho foi avaliar sintomas não-motores da DP em modelo animal com lesão provocada pela neurotoxina 6-hidroxidopamina com duas doses diferentes, injetadas bilateralmente no estriado. Para alcançar nossos objetivos realizamos os testes de campo aberto, apomorfina, labirinto aquático de Morris e testes de discriminação olfativa, além de análises histológicas. Nossos resultados mostraram alterações motoras, déficits de memória e aprendizado, associadas a diminuição de células dopaminérgicas na SN, neurônios estriatais e neurônios da região hipocampal CA1. Dessa forma, esse modelo para os sintomas não-motores da DP pode ser utilizado para a compreensão dos mecanismos que envolvem a doença, assim como para avaliar medidas terapêuticas que possam retardar ou interromper a progressão da DP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: Early treatment in sepsis may improve outcome. The aim of this study was to evaluate how the delay in starting resuscitation influences the severity of sepsis and the treatment needed to achieve hemodynamic stability. Design: Prospective, randomized, controlled experimental study. Setting: Experimental laboratory in a university hospital. Subjects: Thirty-two anesthetized and mechanically ventilated pigs. Interventions: Pigs were randomly assigned (n = 8 per group) to a nonseptic control group or one of three groups in which fecal peritonitis (peritoneal instillation of 2 g/kg autologous feces) was induced, and a 48-hr period of protocolized resuscitation started 6 (Delta T-6 hrs), 12 (Delta T-12 hrs), or 24 (Delta T-24 hrs) hrs later. The aim of this study was to evaluate the impact of delays in resuscitation on disease severity, need for resuscitation, and the development of sepsis-associated organ and mitochondrial dysfunction. Measurements and Main Results: Any delay in starting resuscitation was associated with progressive signs of hypovolemia and increased plasma levels of interleukin-6 and tumor necrosis factor-alpha prior to resuscitation. Delaying resuscitation increased cumulative net fluid balances (2.1 +/- 0.5 mL/kg/hr, 2.8 +/- 0.7 mL/kg/hr, and 3.2 +/- 1.5 mL/kg/hr, respectively, for groups.T-6 hrs, Delta T-12 hrs, and.T-24 hrs; p < .01) and norepinephrine requirements during the 48-hr resuscitation protocol (0.02 +/- 0.04 mu g/kg/min, 0.06 +/- 0.09 mu g/kg/min, and 0.13 +/- 0.15 mu g/kg/min; p = .059), decreased maximal brain mitochondrial complex II respiration (p = .048), and tended to increase mortality (p = .08). Muscle tissue adenosine triphosphate decreased in all groups (p < .01), with lowest values at the end in groups Delta T-12 hrs and.T-24 hrs. Conclusions: Increasing the delay between sepsis initiation and resuscitation increases disease severity, need for resuscitation, and sepsis-associated brain mitochondrial dysfunction. Our results support the concept of a critical window of opportunity in sepsis resuscitation. (Crit Care Med 2012; 40:2841-2849)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

HER-2-positive breast cancers frequently sustain elevated AKT/mTOR signaling, which has been associated with resistance to doxorubicin treatment. Here, we investigated whether rapamycin, an mTOR inhibitor, increased the sensitivity to doxorubicin therapy in two HER-2-overexpressing cell lines: C5.2, which was derived from the parental HB4a by transfection with HER-2 and SKBR3, which exhibits HER-2 amplification. The epithelial mammary cell line HB4a was also analyzed. The combined treatment using 20 nmol/L of rapamycin and 30 nmol/L of doxorubicin arrested HB4a and C5.2 cells in S to G(2)-M, whereas SKBR3 cells showed an increase in the G(0)-G(1) phase. Rapamycin increased the sensitivity to doxorubicin in HER-2-overexpressing cells by approximately 2-fold, suggesting that the combination displayed a more effective antiproliferative action. Gene expression profiling showed that these results might reflect alterations in genes involved in canonical pathways related to purine metabolism, oxidative phosphorylation, protein ubiquitination, and mitochondrial dysfunction. A set of 122 genes modulated by the combined treatment and specifically related to HER-2 overexpression was determined by finding genes commonly regulated in both C5.2 and SKBR3 that were not affected in HB4a cells. Network analysis of this particular set showed a smaller subgroup of genes in which coexpression pattern in HB4a cells was disrupted in C5.2 and SKBR3. Altogether, our data showed a subset of genes that might be more robust than individual markers in predicting the response of HER-2-overexpressing breast cancers to doxorubicin and rapamycin combination. Mol Cancer Ther; 11(2); 464-74. (C) 2011 AACR.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exercise training is a well-known coadjuvant in heart failure treatment; however, the molecular mechanisms underlying its beneficial effects remain elusive. Despite the primary cause, heart failure is often preceded by two distinct phenomena: mitochondria dysfunction and cytosolic protein quality control disruption. The objective of the study was to determine the contribution of exercise training in regulating cardiac mitochondria metabolism and cytosolic protein quality control in a post-myocardial infarction-induced heart failure (MI-HF) animal model. Our data demonstrated that isolated cardiac mitochondria from MI-HF rats displayed decreased oxygen consumption, reduced maximum calcium uptake and elevated H2O2 release. These changes were accompanied by exacerbated cardiac oxidative stress and proteasomal insufficiency. Declined proteasomal activity contributes to cardiac protein quality control disruption in our MI-HF model. Using cultured neonatal cardiomyocytes, we showed that either antimycin A or H2O2 resulted in inactivation of proteasomal peptidase activity, accumulation of oxidized proteins and cell death, recapitulating our in vivo model. Of interest, eight weeks of exercise training improved cardiac function, peak oxygen uptake and exercise tolerance in MI-HF rats. Moreover, exercise training restored mitochondrial oxygen consumption, increased Ca2+-induced permeability transition and reduced H2O2 release in MI-HF rats. These changes were followed by reduced oxidative stress and better cardiac protein quality control. Taken together, our findings uncover the potential contribution of mitochondrial dysfunction and cytosolic protein quality control disruption to heart failure and highlight the positive effects of exercise training in re-establishing cardiac mitochondrial physiology and protein quality control, reinforcing the importance of this intervention as a nonpharmacological tool for heart failure therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The toxicity of palmitic acid (PA) towards a human T-lymphocyte cell line (Jurkat) has been previously investigated but the mechanism(s) of PA action were unknown. In the current study, Jurkat cells were treated with sub-lethal concentrations of PA (50-150 mu M) and the activity of various signaling proteins was investigated. PA-induced apoptosis and mitochondrial dysfunction in a dose-dependent manner as evaluated by DNA fragmentation assay and depolarization of the mitochondrial membrane, respectively. PA treatment provoked release of cytochrome c from the inner mitochondrial membrane to the cytosol, activated members of the MAPK protein family JNK, p38, ERK, activated caspases 3/9, and increased oxidative/nitrosative stress. Exposure of cells to PA for 12 h increased insulin receptor (IR) and GLUT-4 levels in the plasma membrane. Insulin treatment (10 mU/ml/30 min) increased the phosphorylation of the IR beta-subunit and Akt. A correlation was found between DNA fragmentation and expression levels of both IR and GLUT-4. Similar results were obtained for PA-treated lymphocytes from healthy human donors and from mesenteric lymph nodes of 48-h starved rats. PA stimulated glucose uptake by Jurkat cells (in the absence of insulin), stimulated accumulation of neutral lipids (triglyceride), and other lipid classes (phospholipids and cholesterol ester) but reduced glucose oxidation. Our results suggest that parameters of insulin signaling and non-oxidative glucose metabolism are stimulated as part of a coordinated response to prompt survival in lymphocytes exposed to PA but at higher concentrations, apoptosis prevails. These findings may explain aspects of lymphocyte dysfunction associated with diabetes. J. Cell. Physiol. 227: 339-350, 2012. (C) 2011 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reactive oxygen and nitrogen species regulate a wide array of signaling pathways that governs cardiovascular physiology. However, oxidant stress resulting from disrupted redox signaling has an adverse impact on the pathogenesis and progression of cardiovascular diseases. In this review, we address how redox signaling and oxidant stress affect the pathophysiology of cardiovascular diseases such as ischemia-reperfusion injury, hypertension and heart failure. We also summarize the benefits of exercise training in tackling the hyperactivation of cellular oxidases and mitochondrial dysfunction seen in cardiovascular diseases

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The β-Amyloid (βA) peptide is the major component of senile plaques that are one of the hallmarks of Alzheimer’s Disease (AD). It is well recognized that Aβ exists in multiple assembly states, such as soluble oligomers or insoluble fibrils, which affect neuronal viability and may contribute to disease progression. In particular, common βA-neurotoxic mechanisms are Ca2+ dyshomeostasis, reactive oxygen species (ROS) formation, altered signaling, mitochondrial dysfunction and neuronal death such as necrosis and apoptosis. Recent study shows that the ubiquitin-proteasome pathway play a crucial role in the degradation of short-lived and regulatory proteins that are important in a variety of basic and pathological cellular processes including apoptosis. Guanosine (Guo) is a purine nucleoside present extracellularly in brain that shows a spectrum of biological activities, both under physiological and pathological conditions. Recently it has become recognized that both neurons and glia also release guanine-based purines. However, the role of Guo in AD is still not well established. In this study, we investigated the machanism basis of neuroprotective effects of GUO against Aβ peptide-induced toxicity in neuronal (SH-SY5Y), in terms of mitochondrial dysfunction and translocation of phosphatidylserine (PS), a marker of apoptosis, using MTT and Annexin-V assay, respectively. In particular, treatment of SH-SY5Y cells with GUO (12,5-75 μM) in presence of monomeric βA25-35 (neurotoxic core of Aβ), oligomeric and fibrillar βA1-42 peptides showed a strong dose-dependent inhibitory effects on βA-induced toxic events. The maximum inhibition of mitochondrial function loss and PS translocation was observed with 75 μM of Guo. Subsequently, to investigate whether neuroprotection of Guo can be ascribed to its ability to modulate proteasome activity levels, we used lactacystin, a specific inhibitor of proteasome. We found that the antiapoptotic effects of Guo were completely abolished by lactacystin. To rule out the possibility that this effects resulted from an increase in proteasome activity by Guo, the chymotrypsin-like activity was assessed employing the fluorogenic substrate Z-LLL-AMC. The treatment of SH-SY5Y with Guo (75 μM for 0-6 h) induced a strong increase, in a time-dependent manner, of proteasome activity. In parallel, no increase of ubiquitinated protein levels was observed at similar experimental conditions adopted. We then evaluated an involvement of anti and pro-apoptotic proteins such as Bcl-2, Bad and Bax by western blot analysis. Interestingly, Bax levels decreased after 2 h treatment of SH-SY5Y with Guo. Taken together, these results demonstrate that Guo neuroprotective effects against βA-induced apoptosis are mediated, at least partly, via proteasome activation. In particular, these findings suggest a novel neuroprotective pathway mediated by Guo, which involves a rapid degradation of pro-apoptotic proteins by the proteasome. In conclusion, the present data, raise the possibility that Guo could be used as an agent for the treatment of AD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The first aims of this study were to demonstrate if mitochondrial biogenesis and senescence can be induced simultaneously in cell lines upon exposure to a genotoxic stress, and if the presence of mtDNA mutations which impair the functionality of respiratory complexes can influence the ability of a cell to activate senescence. The data obtained on the oncocytic model XTC.UC1 demonstrated that the presence of mitochondrial dysfunction is involved in the maintenance of a senescent phenotype induced by γ-rays treatment. The involvement of mTORC1 in the regulation of senescence has been shown in this cell line. On the other hand, in cells which do not present mitochondrial dysfunction it has been verified that genotoxic stress determines the activation of both mitochondrial biogenesis and senescence. Further studies are necessary in order to verify if mitochondrial biogenesis sustains the activation of senescence. The second aim of this thesis was to determine the involvement of mTORC1 in the regulation of PGC-1α expression, in order to verify what is the cause of the development of oncocytoma in patients affected by two hereditary cancer syndromes; Cowden and Birt-hogg-Dubé . The study of oncocytic tumors developed by patients affected by these syndromes suggested that the double heterozigosity of the two causative genes, PTEN and FLCN respectively, induce the activation of mTORC1 and therefore the activation of PGC-1α expression. On XTC.UC1 cell line, the most suitable in vitro model, experiments of complementation of PTEN and FLCN were conducted. To date, these results demonstrated that mTORC1 is not involved in the regulation of PGC-1α expression, and PTEN and FLCN seem to have opposite effect on PGC-1α expression.