981 resultados para METAL-COMPLEX
Resumo:
Eight new transition metal complexes of benzaldehyde-N(4)–phenylsemicarbazone have been synthesized and characterized by elemental analyses, molar conductance, electronic and infrared spectral studies. In all the complexes, the semicarbazone is coordinated as neutral bidentate ligand. 1H NMR spectrum of [Zn(HL)2(OAc)2] shows that there is no enolisation of the ligand in the complex. The magnetic susceptibility measurements indicate that Cr(III), Mn(II), Fe(III), Co(II) and Cu(II) complexes are paramagnetic and Ni(II) is diamagnetic. The EPR spectrum of [Mn(HL)2(OAc)2] in DMF solution at 77K shows hyperfine sextet with low intensity forbidden lines lying between each of the two main hyperfine lines. The g values calculated for the [Cu(HL)2SO4] complex in frozen DMF, indicate the presence of unpaired electron in the dx2−y2 orbital. The metal ligand bonding parameters evaluated showed strong in-plane bonding and in-plane bonding. The ligand and complexes were screened for their possible antimicrobial activities.
Resumo:
This study gave the first report on the biennial metal divergence in the sediments of Cochin Estuarine system (CES). Surface sediments from 6 prominent regions of CES were sampled in 2009 and 2011 for the geochemical and environmental assessment of trace metals (Cd, Co, Cr, Cu, Pb Fe, Mg, Mn, Ni and Zn).Besides texture, total organic carbon (TOC) and CHNS were also done. The contamination and risk assessment were performed by determining geochemical indices. Comparison with sediment quality guidelines were done to assess the probability for ecotoxicological threat to the estuary. Results showed that the measured heavy metals had varied spatial distribution patterns, indicating that they had complex origins and controlling factors
Resumo:
Model catalysts of Pd nanoparticles and films on TiO2 (I 10) were fabricated by metal vapour deposition (MVD). Molecular beam measurements show that the particles are active for CO adsorption, with a global sticking probability of 0.25, but that they are deactivated by annealing above 600 K, an effect indicative of SMSI. The Pd nanoparticles are single crystals oriented with their (I 11) plane parallel to the surface plane of the titania. Analysis of the surface by atomic resolution STM shows that new structures have formed at the surface of the Pd nanoparticles and films after annealing above 800 K. There are only two structures, a zigzag arrangement and a much more complex "pinwheel" structure. The former has a unit cell containing 7 atoms, and the latter is a bigger unit cell containing 25 atoms. These new structures are due to an overlayer of titania that has appeared on the surface of the Pd nanoparticles after annealing, and it is proposed that the surface layer that causes the SMSI effect is a mixed alloy of Pd and Ti, with only two discrete ratios of atoms: Pd/Ti of 1: 1 (pinwheel) and 1:2 (zigzag). We propose that it is these structures that cause the SMSI effect. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Transition metal alkynyl complexes containing perfluoroaryl groups have been prepared directly from trimethylsilyl-protected mono- and di-ethynyl perfluoroarenes by simple desilylation/metallation reaction sequences. Reactions between Me3SiC CC6F5 and RuCl(dppe)Cp'[Cp' = Cp, Cp*] in the presence of KF in MeOH give the monoruthenium complexes Ru(C CC6F5)(dppe)Cp'[Cp' = Cp (2); Cp* (3)], which are related to the known compound Ru(C CC6F5)(PPh3)(2)Cp (1). Treatment of Me3SiC CC6F5 with Pt-2(mu-dppm)(2)Cl-2 in the presence of NaOMe in MeOH gave the bis(alkynyl) complex Pt-2(mu-dppm)(2)(C CC6F5)(2) (4). The Pd(0)/Cu(I)-catalysed reactions between Au(C CC6F5)(PPh3) and Mo( CBr)(CO)(2) Tp* [Tp* = hydridotris(3.5-dimethylpyrazoyl)borate], Co-3(mu(3)-CBr)(mu-dppm)(CO)(7) or IC CFc [Fc = (eta(5)-C5H4)FeCp] afford Mo( CC CC6F5)(CO)(2)Tp* (5), Co-3(mu 3-CC CC6F5)(mu-dppm)(CO)(7) (6) and FcC CC CC6F5 (7), respectively. The diruthenium complexes 1,4-{Cp'(PP)RuC C}(2)C6F4 [(PP)Cp'=(PPh3)(2)Cp (8); (dppe)Cp (9); (dppe)Cp* (10)] are prepared from 1,4-(Me3SiC C)(2)C6F4 in a manner similar to that described for the monoruthenium complexes 1-3. The non-fluorinated complexes 1,4-{Cp'(PP)RuC C}(2)C6H4 [(PP)Cp' = (PPh3)(2)Cp (11); ( dppe) Cp (12); ( dppe) Cp* (13)], prepared for comparison, are obtained from 1,4-(Me3SiC C)(2)C6H4. Spectro-electrochemical studies of the ruthenium aryl and arylene alkynyl complexes 2-3 and 8-13, together with DFT-based computational studies on suitable model systems, indicate that perfluorination of the aromatic ring has little effect on the electronic structures of these compounds, and that the frontier orbitals have appreciable diethynylphenylene character. Molecular structure determinations are reported for the fluoroaromatic complexes 1, 2, 3, 6 and 10.
Resumo:
Reaction of fac-[ Mo( CO)(3)( NCMe)(3)] with three equivalents of NCCH2(C4H3S- 3) in acetonitrile gives the tris(thiophene- 3- acetonitrile) complex, fac-[Mo(CO)(3){NCCH2(C4H3S-3)}(3)] (1) in 7% yield. Complex 1 crystallizes out in the orthorhombic space group Pnma with a = 12.714( 17), b = 16.41( 2), c = 11.304(16) Angstrom, Z = 4. The structure has crystallographic m symmetry and the metal is in an almost perfect octahedral environment, with a facial arrangement of carbonyl and thiophene- 3- acetonitrile groups. The thiophene rings are disordered.
Resumo:
A Cu-II complex of protonated 4,4'-bipyridine (Hbyp) and 2-picolinate (pic), [Cu-2(pic)(3)(Hbyp)(H2O)(ClO4)(2)], has been synthesised and characterised by single-crystal X-ray analysis. The structure consists of two copper atoms that have different environments, bridged by a carboxylate group. The equatorial plane is formed by the two bidentate picolinate groups in one Cu-II, and one picolinate, one monodentate 4,4'-bipyridyl ligand and a water molecule in the other. Each copper atom is also weakly bonded to a perchlorate anion in an axial position. One of the coordinated perchlorate groups displays anion-pi interaction with the coordinated pyridine ring. The noncoordinated carboxylate oxygen is involved in lone-pair (l.p.)-pi interaction with the protonated pyridine ring. In addition there are pi-pi and H-bonding interactions in the structure. Bader's theory of "atoms in molecules" (AIM) is used to characterise the anion-pi and l.p.-pi interactions observed in the solid state. A high-level ab initio study (RI-MP2/aug-cc-pVTZ level of theory) has been performed to analyse the anion-pi binding affinity of the pyridine ring when it is coordinated to a transition metal and also when the other pyridine ring of the 4,4'-bipyridine moiety is protonated. Theoretical investigations support the experimental findings of an intricate network of intermolecular interactions, which is characterised in the studied complex, and also indicate that protonation as well as coordination to the transition metal have important roles in influencing the pi-binding properties of the aromatic ring. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009)
Resumo:
Three new polynuclear copper(II) complexes of 2-picolinic acid (Hpic), {[Cu-2(pic)(3)(H2O)]ClO4}(n) (1), {[Cu-2(pic)(3)(H2O)]BF4}(n) (2), and [Cu-2(pic)3(H2O)(2)(NO3)](n) (3), have been synthesized by reaction of the "metalloligand" [Cu-(pic)(2)] with the corresponding copper(II) salts. The compounds are characterized by single-crystal X-ray diffraction analyses and variable-temperature magnetic measurements. Compounds 1 and 2 are isomorphous and crystallize in the triclinic system with space group P (1) over bar, while 3 crystallizes in the monoclinic system with space group P2(1)/n. The structural analyses reveal that complexes 1 and 2 are constructed by "fish backbone" chains through syn-anti (equatorial-equatorial) carboxylate bridges, which are linked to one another by syn-anti (equatorial-axial) carboxylate bridges, giving rise to a rectangular grid-like two-dimensional net. Complex 3 is formed by alternating chains of syn-anti carboxylate-bridged copper(II) atoms, which are linked together by strong H bonds involving coordinated nitrate ions and water molecules and uncoordinated oxygen atoms from carboxylate groups. The different coordination ability of the anions along with their involvement in the H-bonding network seems to be responsible for the difference in the final polymeric structures. Variable-temperature (2-300 K) magnetic susceptibility measurement shows the presence of weak ferromagnetic coupling for all three complexes that have been fitted with a fish backbone model developed for 1 and 2 (J = 1.74 and 0.99 cm(-1); J' = 0.19 and 0.25 cm(-1), respectively) and an alternating chain model for 3 (J = 1.19 cm(-1) and J' = 1.19 cm(-1)).
Resumo:
Extended-chain complexes containing multiple transition metal centres linked by conjugated mu-cyanodiazenido(1-) ligands [N= N-C N]-have been obtained by reaction of trans-[BrW(dppe)(2)(N2CN)], 1, [dppe = 1,2-bis(diphenylphosphino) ethane] with dirhodium(II) tetra-acetate, bis(benzonitrile) palladium(II) dichloride, and bis(aqua) M(II) bis(hexa. uoroacetylacetonate) (M = Mn, Ni, Cu, Zn): stronger Lewis acids such as tetrakis(acetonitrile) palladium(II) tetra. uoroborate and boron trifl. uoride promote hydrolysis of complex 1, leading to the isolation of a novel carbamoylhydrazido(2-) complex, trans-[BrW(dppe) 2(N2HC=ONH2)](+)[BF4](-).
Resumo:
Cyclo-condensation of aroyl hydrazides with the cationic tungsten-dichlorodiazomethane complex [BrW(dppe)(2)(N2CCI2)](+) affords neutral oxadiazolyldiazenido(1-) complexes which react readily with a wide range of transition and non-transition metal species to afford a novel series of crystallographically-characterised heteropolynuclear complexes containing bridging oxadiazolyldiazenido(1-) ligands.
Resumo:
Two 28-membered octaazamacrocycles, [28]py(2)N(6) and Me-2[28]py(2)N(6), have been synthesized. The protonation constants of the N-methyl. derivative and the stability constants of its complexes with Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+ were determined at 25degreesC in 0.10 mol dm(-3) KNO3. The high overall basicity of Me-2[28]py(2)N(6) is ascribed to the weaker repulsion between protonated contiguous charged ammonium sites separated by propyl chains. These studies together with NMR, UV-vis and EPR spectroscopies indicated the presence of mono- and di-nuclear species, The single crystal structure of the complex [Ni-2([28]py(2)N(6))(H2O)(4)]Cl-4.3H(2)O was determined, and showed each nickel centre in a distorted octahedral co-ordination environment. The nickel centres are held within the macrocycle at a large distance of 6.991(g) Angstrom from each other. The formation of mononuclear complexes was evaluated theoretically via molecular mechanics (MM) and molecular dynamics (MD) calculations and showed that these large macrocycles have sufficient flexibility to encapsulate metal ions with different stereo-electronic sizes. Structures for small and large metal ions are proposed.
Resumo:
The compound bis[1,1'-N,N'-(2-picolyl) aminomethyl] ferrocene, L-1, was synthesized. The protonation constants of this ligand and the stability constants of its complexes with Ni2+, Cu2+, Zn2+, Cd2+ and Pb2+ were determined in aqueous solution by potentiometric methods at 25degreesC and at ionic strength 0.10 mol dm(-3) in KNO3. The compound L-1 forms only 1:1 (M:L) complexes with Pb2+ and Cd2+ while with Ni2+ and Cu2+ species of 2:1 ratio were also found. The complexing behaviour of L-1 is regulated by the constraint imposed by the ferrocene in its backbone, leading to lower values of stability constants for complexes of the divalent first row transition metals when compared with related ligands. However, the differences in stability are smaller for the larger metal ions. The structure of the copper complex with L-1 was determined by single-crystal X-ray diffraction and shows that a species of 2:2 ratio is formed. The two copper centres display distorted octahedral geometries and are linked through the two L1 bridges at a long distance of 8.781(10) Angstrom. The electrochemical behaviour of L-1 was studied in the presence of Ni2+, Cu2+, Zn2+, Cd2+ and Pb2+, showing that upon complexation the ferrocene-ferrocenium half-wave potential shifts anodically in relation to that of the free ligand. The maximum electrochemical shift (DeltaE(1/2)) of 268 mV was found in the presence of Pb2+, followed by Cu2+ (218 mV), Ni2+ (152 mV), Zn2+ (111 mV) and Cd2+ (110 mV). Moreover, L-1 is able to electrochemically and selectively sense Cu2+ in the presence of a large excess of the other transition metal cations studied.
Resumo:
it has been established that triazinyl bipyridines (hemi-BTPs) and bis-triazinyl pyridines (BTPs), ligands which are currently being investigated as possible ligands for the separation of actinides from lanthanides in nuclear waste, are able to form homoleptic complexes with first row transition metals such as cobalt(IT), copper(II), iron(II), manganese(II), nickel(II) and zinc(II). The metal complexes exhibit six-co-ordinate octahedral structures and redox states largely analogous to those of the related terpyridine complexes. The reactivity of the different redox states of cobalt bis-hemi-BTP complex in aqueous environments has been studied with two-phase electrochemistry by immobilisation of the essentially water-insoluble metal complexes on graphite electrodes and the immersion of this modified electrode in an aqueous electrolyte. It was found that redox potentials for the metal-centred reactions were pH-independent whereas the potentials for the ligand-centred reactions were strongly pH-dependent. The reductive degradation of these complexes has been investigated by computational methods. Solvent extraction experiments have been carried out for a range of metals and these show that cobalt(II) and nickel(II) as well as palladium(II), cadmium(II) and lead(II) were all extracted with the ligands 1e and 2c with higher distribution ratios that was observed for americium(III) under the same conditions. The implications of this result for the use of these ligands to separate actinides from nuclear waste are discussed. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Reaction of cis-Ru(bisox)(2)Cl-2, where bisox is 4,4,4',4'-tetramethyl-2,2'-bisoxazoline, with HNO3 in 1 : 4 molar proportion in boiling water under N-2 atmosphere and subsequent addition of an excess of NaClO4 center dot H2O yields [Ru(bisox)(HL)(NO)](ClO4)(NO3) (1). HL is a hydrolysed form of bisox where one of the oxazoline rings opens up. X-Ray crystallography shows that 1 contains an octahedral RuN5O core. HL binds the metal through an imino N, an amide N and an alcoholic O atom. Reaction of cis-Ru(bisox)(2)Cl-2 with an excess of NaNO2 in water gives cis-Ru(bisox)(2)(NO2)(2) (2). On acidification by HClO4 in methanol, 2 is smoothly converted to cis-[Ru(bisox)(2)(NO2)(NO)](ClO4)(2) (3) due to equilibrium (1).
Resumo:
Using the I : 2 condensate of benzil dihydrazone and 2-acetylpyridine as the ligand L, two complexes of zinc, [ZnL(CH3COO)]PF6 (1) and [ZnL(H2O)CIO4]CIO4 H2O (2), are synthesised from Zn(CH3COO)(2).2H(2)O and Zn(CIO4)(2).6H(2)O, respectively. From X-ray crystallography, both the complexes are found to be single helical with the metal in distorted octahedral N4O2 environment. In 1, the two oxygen atoms come from the bidentate acetate while 2 is a monoaqua complex with a perchlorate anion bound to the metal in monodentate fashion. The perchlorate in 2 is not at all weakly bound [Zn-O(perchlorate) 2.256(4) A]. Still in acetonitrile solution, the coordinated perchlorate ion dissociates upon deprotonation [reaction (i)].
Resumo:
Three supramolecular complexes of Co(II) using SCN-/SeCN- in combination with 4,4'-dipyridyl-N,N'-dioxide (dpyo), i.e., {[Co(SCN)(2)(dpyo)(2)].(dpyo)}(n) ( 1), {[Co(SCN)(2)(dpyo)(H2O)(2)].(H2O)}(n) ( 2), {[Co(SeCN)(2)(dpyo)(H2O)(2)]center dot(H2O)}(n) ( 3), have been synthesized and characterized by single-crystal X-ray analysis. Complex 1 is a rare example of a dpyo bridged two-dimensional (2D) coordination polymer, and pi-stacked dpyo supramolecular rods are generated by the lattice dpyo, passing through the rhombic grid of stacked layers, resulting in a three-dimensional (3D) superstructure. Complexes 2 and 3 are isomorphous one-dimensional (1D) coordination polymers [-Co-dpyo-Co-] that undergo self-assembly leading to a bilayer architecture derived through an R-2(2)(8) H-bonding synthon between coordinated water and dpyo oxygen. A reinvestigation of coordination polymers [Mn(SCN)(2)(dpyo)( H2O)(MeOH)](n) ( 4) and {[Fe(SCN)(2)(dpyo)(H2O)(2)]center dot(H2O)}(n) ( 5) reported recently by our group [ Manna et al. Indian J. Chem. 2006, 45A, 1813] reveals brick wall topology rather than bilayer architecture is due to the decisive role of S center dot center dot center dot S/Se center dot center dot center dot Se interactions in determining the helical nature in 4 and 5 as compared to zigzag polymeric chains in 2 and 3, although the same R-2(2)(8) synthon is responsible for supramolecular assembly in these complexes.