981 resultados para MECHANICALLY VENTILATED PATIENTS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective. The aim of this study is to test the hypothesis that recruitment maneuvers (RMs) might act differently in models of pulmonary (p) and extrapulmonary (exp) acute lung injury (ALI) with similar transpulmonary pressure changes. Design: Prospective, randomized, controlled experimental study. Setting. University research laboratory. Subjects: Wistar rats were randomly divided into four groups. In control groups, sterile saline solution was intratracheally (0.1 mL, Cp) or intraperitoneally (1 mL, Cexp) injected, whereas ALI animals received Escherichia coli lipopolysaccharide intratracheally (100 jig, ALIp) or intraperitoneally (1 mg, ALIexp). After 24 hrs, animals were mechanically ventilated (tidal volume, 6 mL/kg; positive end-expiratory pressure, 5 cm H2O) and three RMs (pressure inflations to 40 cm H2O for 40 secs, 1 min apart) applied. Measurements and Main Results. Pao(2), lung resistive and viscoelastic pressures, static elastance, lung histology (light and electron microscopy), and type III procollagen messenger RNA expression in pulmonary tissue were measured before RMs and at the end of 1 hr of mechanical ventilation. Mechanical variables, gas exchange, and the fraction of area of alveolar collapse were similar in both ALI groups. After RMs, lung resistive and viscoelastic pressures and static elastance decreased more in ALIexp (255%,180%, and 118%, respectively) than in ALIp (103%, 59%, and 89%, respectively). The amount of atelectasis decreased more in ALIexp than in ALIp (from 58% to 19% and from 59% to 33%, respectively). RMs augmented type III procollagen messenger RNA expression only in the ALIp group (19%), associated with worsening in alveolar epithelium injury but no capillary endothelium lesion, whereas the ALIexp group showed a minor detachment of the alveolar capillary membrane. Conclusions. Given the same transpulmonary pressures, RMs are more effective at opening collapsed alveoli in ALIexp than in ALIp, thus improving lung mechanics and oxygenation with limited damage to alveolar epithelium.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The goal of the study was to compare the effects of different assisted ventilation modes with pressure controlled ventilation (PCV) on lung histology, arterial blood gases, inflammatory and fibrogenic mediators in experimental acute lung injury (ALI). Paraquat-induced ALI rats were studied. At 24 h, animals were anaesthetised and further randomized as follows (n = 6/group): (1) pressure controlled ventilation mode (PCV) with tidal volume (V (T)) = 6 ml/kg and inspiratory to expiratory ratio (I:E) = 1:2; (2) three assisted ventilation modes: (a) assist-pressure controlled ventilation (APCV1:2) with I:E = 1:2, (b) APCV1:1 with I:E = 1:1; and (c) biphasic positive airway pressure and pressure support ventilation (BiVent + PSV), and (3) spontaneous breathing without PEEP in air. PCV, APCV1:1, and APCV1:2 were set with P (insp) = 10 cmH(2)O and PEEP = 5 cmH(2)O. BiVent + PSV was set with two levels of CPAP [inspiratory pressure (P (High) = 10 cmH(2)O) and positive end-expiratory pressure (P (Low) = 5 cmH(2)O)] and inspiratory/expiratory times: T (High) = 0.3 s and T (Low) = 0.3 s. PSV was set as follows: 2 cmH(2)O above P (High) and 7 cmH(2)O above P (Low). All rats were mechanically ventilated in air and PEEP = 5 cmH(2)O for 1 h. Assisted ventilation modes led to better functional improvement and less lung injury compared to PCV. APCV1:1 and BiVent + PSV presented similar oxygenation levels, which were higher than in APCV1:2. Bivent + PSV led to less alveolar epithelium injury and lower expression of tumour necrosis factor-alpha, interleukin-6, and type III procollagen. In this experimental ALI model, assisted ventilation modes presented greater beneficial effects on respiratory function and a reduction in lung injury compared to PCV. Among assisted ventilation modes, Bi-Vent + PSV demonstrated better functional results with less lung damage and expression of inflammatory mediators.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction: Recruitment maneuvers (RMs) seem to be more effective in extrapulmonary acute lung injury (ALI), caused mainly by sepsis, than in pulmonary ALI. Nevertheless, the maintenance of adequate volemic status is particularly challenging in sepsis. Since the interaction between volemic status and RMs is not well established, we investigated the effects of RMs on lung and distal organs in the presence of hypovolemia, normovolemia, and hypervolemia in a model of extrapulmonary lung injury induced by sepsis. Methods: ALI was induced by cecal ligation and puncture surgery in 66 Wistar rats. After 48 h, animals were anesthetized, mechanically ventilated and randomly assigned to 3 volemic status (n = 22/group): 1) hypovolemia induced by blood drainage at mean arterial pressure (MAP)approximate to 70 mmHg; 2) normovolemia (MAP approximate to 100 mmHg), and 3) hypervolemia with colloid administration to achieve a MAP approximate to 130 mmHg. In each group, animals were further randomized to be recruited (CPAP = 40 cm H(2)O for 40 s) or not (NR) (n = 11/group), followed by 1 h of protective mechanical ventilation. Echocardiography, arterial blood gases, static lung elastance (Est, L), histology (light and electron microscopy), lung wet-to-dry (W/D) ratio, interleukin (IL)-6, IL-1 beta, caspase-3, type III procollagen (PCIII), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) mRNA expressions in lung tissue, as well as lung and distal organ epithelial cell apoptosis were analyzed. Results: We observed that: 1) hypervolemia increased lung W/D ratio with impairment of oxygenation and Est, L, and was associated with alveolar and endothelial cell damage and increased IL-6, VCAM-1, and ICAM-1 mRNA expressions; and 2) RM reduced alveolar collapse independent of volemic status. In hypervolemic animals, RM improved oxygenation above the levels observed with the use of positive-end expiratory pressure (PEEP), but increased lung injury and led to higher inflammatory and fibrogenetic responses. Conclusions: Volemic status should be taken into account during RMs, since in this sepsis-induced ALI model hypervolemia promoted and potentiated lung injury compared to hypo-and normovolemia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background and objective The influence of ventilatory settings on static and functional haemodynamic parameters during mechanical ventilation is not completely known. The purpose of this study was to evaluate the effect of positive end-expiratory pressure, tidal volume and inspiratory to expiratory time ratio variations on haemodynamic parameters during haemorrhage and after transfusion of shed blood. Methods Ten anaesthetized pigs were instrumented and mechanically ventilated with a tidal volume of 8 ml kg(-1), a positive end-expiratory pressure of 5 cmH(2)O and an inspiratory to expiratory ratio of 1 : 2. Then, they were submitted in a random order to different ventilatory settings (tidal volume 16 ml kg(-1), positive end-expiratory pressure 15 cmH(2)O or inspiratory to expiratory time ratio 2: 1). Functional and static haemodynamic parameters (central venous pressure, pulmonary artery occlusion pressure, right ventricular end-diastolic volume and pulse pressure variation) were evaluated at baseline, during hypovolaemia (withdrawal of 20% of estimated blood volume) and after an infusion of withdrawn blood (posttransfusion). Results During baseline, a positive end-expiratory pressure of 15cmH(2)O significantly increased pulmonary artery occlusion pressure from 14.6 +/- 1.6 mmHg to 17.4 +/- 1.7 mmHg (P<0.001) and pulse pressure variation from 15.8 +/- 8.5% to 25.3 +/- 9.5% (P<0.001). High tidal volume increased pulse pressure variation from 15.8 8.5% to 31.6 +/- 10.4% (P<0.001), and an inspiratory to expiratory time ratio of 2: 1 significantly increased only central venous pressure. During hypovolaemia, high positive end-expiratory pressure influenced all studied variables, and high tidal volume strongly increased pulse pressure variation (40.5 +/- 12.4% pre vs. 84.2 +/- 19.1 % post, P<0.001). The inversion of the inspiratory to expiratory time ratio only slightly increased filling pressures during hypovolaemia, without without affecting pulse pressure variation or right ventricle end-diastolic volume. Conclusion We concluded that pulse pressure variation measurement is influenced by cyclic variations in intrathoracic pressure, such as those caused by augmentations in tidal volume. The increase in mean airway pressure caused by positive end-expiratory pressure affects cardiac filling pressures and also pulse pressure variation, although to a lesser extent. Inversion of the inspiratory to expiratory time ratio does not induce significant changes in static and functional haemodynamic parameters. Eur J Anaesthesiol 26:66-72 (c) 2009 European Society of Anaesthesiology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Radical-mediated oxidative damage of skeletal muscle membranes has been implicated in the fatigue process. Vitamin E (VE) is a major chain breaking antioxidant that has been shown to reduce contraction-mediated oxidative damage. We hypothesized that VE deficiency would adversely affect Muscle contractile function, resulting in a more rapid development of muscular fatigue during exercise. To test this postulate, rats were fed either a VE-deficient (EDEF) diet or a control (CON) diet containing VE. Following a 12-week feeding period, animals were anesthetized and mechanically ventilated. Muscle endurance (fatigue) and contractile properties were evaluated using an in situ preparation of the tibialis anterior (TA) muscle. Contractile properties of the TA muscle were determined before and after a fatigue protocol. The muscle fatigue protocol consisted of 60 min of repetitive contractions (250 ms trains at 15 Hz; duty cycle = I I %) of the TA muscle. Prior to the fatigue protocol, no significant differences existed in the force-frequency curves between EDEF and CON animals. At the completion of the fatigue protocol, muscular force production was significantly (P

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate the effects of 2 different doses of exogenous surfactant on pulmonary mechanics and on the regularity of pulmonary parenchyma inflation in newborn rabbits. METHOD: Newborn rabbits were submitted to tracheostomy and randomized into 4 study groups: the Control group did not receive any material inside the trachea; the MEC group was instilled with meconium, without surfactant treatment; the S100 and S200 groups were instilled with meconium and were treated with 100 and 200 mg/kg of exogenous surfactant (produced by Instituto Butantan) respectively. Animals from the 4 groups were mechanically ventilated during a 25-minute period. Dynamic compliance, ventilatory pressure, tidal volume, and maximum lung volume (P-V curve) were evaluated. Histological analysis was conducted using the mean linear intercept (Lm), and the lung tissue distortion index (SDI) was derived from the standard deviation of the means of the Lm. One-way analysis of variance was used with a = 0.05. RESULTS: After 25 minutes of ventilation, dynamic compliance (mL/cm H2O · kg) was 0.87 ± 0.07 (Control); 0.49 ± 0.04 (MEC*); 0.67 ± 0.06 (S100); and 0.67 ± 0.08 (S200), and ventilatory pressure (cm H2O) was 9.0 ± 0.9 (Control); 16.5 ± 1.7 (MEC*); 12.4 ± 1.1 (S100); and 12.1 ± 1.5 (S200). Both treated groups had lower Lm values and more homogeneity in the lung parenchyma compared to the MEC group: SDI = 7.5 ± 1.9 (Control); 11.3 ± 2.5 (MEC*), 5.8 ± 1.9 (S100); and 6.7 ± 1.7 (S200) (*P < 0.05 versus all the other groups). CONCLUSIONS: Animals treated with surfactant showed significant improvement in pulmonary mechanics and more regularity of the lung parenchyma in comparison to untreated animals. There was no difference in results after treatment with either of the doses used.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: To assess the effects of the elevation of the left ventricular end-diastolic pressure (LVEDP) on the value of the 1st temporal derivative of the ventricular pressure (dP/dt). METHODS: Nineteen anesthetized dogs were studied. The dogs were mechanically ventilated and underwent thoracotomy with parasympathetic nervous system block. The LVEDP was controlled with the use of a perfusion circuit connected to the left atrium and adjusted to the height of a reservoir. The elevation of the LVEDP was achieved by a sudden increase in the height of a reservoir filled with blood. Continuous recordings of the electrocardiogram, the aortic and ventricular pressures and the dP/dt were performed. RESULTS: Elevation of the LVEDP did not result in any variation of the heart rate (167±16.0bpm, before the procedure; 167±15.5bpm, after the procedure). All the other variables assessed, including systolic blood pressure (128±18.3mmHg and 150±21.5mmHg), diastolic blood pressure (98±16.9mmHg and 115±19.8mmHg), LVEDP (5.5±2.49 and 9.3±3.60mmHg), and dP/dt (4,855 ± 1,082 mmHg/s and 5,149±1,242mmHg/s) showed significant increases following the expansion of the ventricular cavity. Although the elevation of the dP/dt was statistically significant, 6 dogs curiously showed a decrease in the values of dP/dt. CONCLUSION: Sudden elevation of the LVEDP resulted in increased values of dP/dt; however, in some dogs, this response was not uniform.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: : To determine the influence of nebulizer types and nebulization modes on bronchodilator delivery in a mechanically ventilated pediatric lung model. DESIGN: : In vitro, laboratory study. SETTING: : Research laboratory of a university hospital. INTERVENTIONS: : Using albuterol as a marker, three nebulizer types (jet nebulizer, ultrasonic nebulizer, and vibrating-mesh nebulizer) were tested in three nebulization modes in a nonhumidified bench model mimicking the ventilatory pattern of a 10-kg infant. The amounts of albuterol deposited on the inspiratory filters (inhaled drug) at the end of the endotracheal tube, on the expiratory filters, and remaining in the nebulizers or in the ventilator circuit were determined. Particle size distribution of the nebulizers was also measured. MEASUREMENTS AND MAIN RESULTS: : The inhaled drug was 2.8% ± 0.5% for the jet nebulizer, 10.5% ± 2.3% for the ultrasonic nebulizer, and 5.4% ± 2.7% for the vibrating-mesh nebulizer in intermittent nebulization during the inspiratory phase (p < 0.01). The most efficient nebulizer was the vibrating-mesh nebulizer in continuous nebulization (13.3% ± 4.6%, p < 0.01). Depending on the nebulizers, a variable but important part of albuterol was observed as remaining in the nebulizers (jet and ultrasonic nebulizers), or being expired or lost in the ventilator circuit (all nebulizers). Only small particles (range 2.39-2.70 µm) reached the end of the endotracheal tube. CONCLUSIONS: : Important differences between nebulizer types and nebulization modes were seen for albuterol deposition at the end of the endotracheal tube in an in vitro pediatric ventilator-lung model. New aerosol devices, such as ultrasonic and vibrating-mesh nebulizers, were more efficient than the jet nebulizer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Résumé Cette étude décrit un modèle expérimental de bronchoconstriction précoce induite par aérosolisation d'un extrait d'Ascaris suum chez des moutons anesthésiés par de l'isoflurane et ventilés mécaniquement. Dix moutons adultes ont été anesthésiés et ventilés mécaniquement puis ont été exposés à un stimulus bronchoconstrictif sous forme d'un aérosol d'extrait d'Ascaris suum durant 25 minutes. Tous les moutons ont été exposés deux fois à huit semaines d'intervalle à ce même stimulus. Les échanges gazeux ainsi que les paramètres respiratoires ont été mesurés régulièrement durant la période d'aérosolisation ainsi que durant les 60 minutes suivantes. A la fin de la période d'aérosolisation, une augmentation significative (p<0.05) des pressions de crête (+114%) et de plateau (+148%), de la résistance expiratoire (+93%) et de la pression partielle artérielle de gaz carbonique PaCO2 (+25%) a été constatée, de même qu'une diminution significative (p<0.05) de la compliance respiratoire (-41 %) et de la pression partielle artérielle d'oxygène PaO2 (-49%). Ces modifications sont restées stables durant toute la période d'observation. Ce modèle expérimental animal de bronchoconstriction offre de nombreux avantages : la stabilité hémodynamique et le confort de l'animal sont améliorés et la réaction de stress est inhibée. Il permet de plus une distribution optimale de l'antigène respiratoire et finalement évite l'utilisation d'un pléthysmographe corporel. Abstract This study describes a simplified experimental model of early bronchoconstriction induced by aerosolization of Ascaris suum extract in isoflurane-anesthetized and mechanically ventilated sheep. Ten adult sheep were anesthetized, mechanically ventilated and then challenged with an aerosol of Ascaris suum extract during 25 minutes. All of them were challenged twice at eight weeks intervals. During the bronchoconstrictive challenges and the following sixty minutes, gas exchange was measured and respiratory mechanics parameters computed from a lung mechanics calculator. At the end of the challenge, a significant increase (p<0.05) was observed in peak (+114%) and plateau (+148%) pressures, expiratory resistance (+93%) and PaCO2 (+25%) along with a significant decrease (p<0.05) in respiratory compliance (-41 %) and PaO2 (-49%). These changes remained stable throughout the 60 minutes study period. This model offers several advantages: hemodynamic stability and animal welfare are improved and the stress response is blunted. It allows an optimal distribution of the antigen and finally avoids the need of a body plethysmograph.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pulse oximetry has been proposed as a noninvasive continuous method for transcutaneous monitoring of arterial oxygen saturation of hemoglobin (tcSO2) in the newborn infant. The reliability of this technique in detecting hyperoxemia is controversial, because small changes in saturation greater than 90% are associated with relatively large changes in arterial oxygen tension (PaO2). The purpose of this study was to assess the reliability of pulse oximetry using an alarm limit of 95% tcSO2 in detecting hyperoxemia (defined as PaO2 greater than 90 mm Hg) and to examine the effect of varying the alarm limit on reliability. Two types of pulse oximeter were studied alternately in 50 newborn infants who were mechanically ventilated with indwelling arterial lines. Three arterial blood samples were drawn from every infant during routine increase of inspired oxygen before intratracheal suction, and PaO2 was compared with tcSO2. The Nellcor N-100 pulse oximeter identified all 26 hyperoxemic instances correctly (sensitivity 100%) and alarmed falsely in 25 of 49 nonhyperoxemic instances (specificity 49%). The Ohmeda Biox 3700 pulse oximeter detected 13 of 35 hyperoxemic instances (sensitivity 37%) and alarmed falsely in 7 of 40 nonhyperoxemic instances (specificity 83%). The optimal alarm limit, defined as a sensitivity of 95% or more associated with maximal specificity, was determined for Nellcor N-100 at 96% tcSO2 (specificity 38%) and for Ohmeda Biox 3700 at 89% tcSO2 (specificity 52%). It was concluded that pulse oximeters can be highly sensitive in detecting hyperoxemia provided that type-specific alarm limits are set and a low specificity is accepted.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Acute severe asthma is defined by the occurrence of an acute exacerbation resistant to the initial medical treatment, complicated by life-threatening respiratory distress due to severe lung hyperinflation. The conventional therapeutic approach is based on oxygen therapy and on the combined treatment of inhaled beta2-agonists at repeated doses and systemic corticosteroids. Inhaled or systemic magnesium sulfate is also recommended. The unresponsiveness to the initial bronchodilating therapy and the development of respiratory distress requiring intubation significantly increases mortality, due to the complications induced by mechanical ventilation. In these situations, a ventilatory strategy, including controlled hypoventilation with permissive hypercapnia, aiming at preventing lung hyperinflation, is indicated. Non-invasive ventilation may be successful in certain patients and represents an effective alternative to intubation. In ventilated patients, helium-oxygen mixtures can be considered as adjunctive therapies. After having reviewed the basic pathophysiological principles, this article will focus on the current medical treatment and of the modalities of mechanical ventilation in acute severe asthma.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

INTRODUCTION The objectives were to characterize alveolar fluid clearance (AFC) in pigs with normal lungs and to analyze the effect of immediate application of positive end-expiratory pressure (PEEP). METHODS Animals (n = 25) were mechanically ventilated and divided into four groups: small edema (SE) group, producing pulmonary edema (PE) by intratracheal instillation of 4 ml/kg of saline solution; small edema with PEEP (SE + PEEP) group, same as previous but applying PEEP of 10 cmH2O; large edema (LE) group, producing PE by instillation of 10 ml/kg of saline solution; and large edema with PEEP (LE + PEEP) group, same as LE group but applying PEEP of 10 cmH2O. AFC was estimated from differences in extravascular lung water values obtained by transpulmonary thermodilution method. RESULTS At one hour, AFC was 19.4% in SE group and 18.0% in LE group. In the SE + PEEP group, the AFC rate was higher at one hour than at subsequent time points and higher than in the SE group (45.4% vs. 19.4% at one hour, P < 0.05). The AFC rate was also significantly higher in the LE + PEEP than in the LE group at three hours and four hours. CONCLUSIONS In this pig model, the AFC rate is around 20% at one hour and around 50% at four hours, regardless of the amount of edema, and is increased by the application of PEEP.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The key role of intrarenal adenosine in mediating the hypoxemic acute renal insufficiency in newborn rabbits has been well demonstrated using the nonspecific adenosine antagonist theophylline. The present study was designed to define the role of adenosine A1 receptors during systemic hypoxemia by using the specific A1-receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). Renal function parameters were assessed in 31 anesthetized and mechanically ventilated newborn rabbits. In normoxia, DPCPX infusion induced a significant increase in diuresis (+44%) and GFR (+19%), despite a significant decrease in renal blood flow (RBF) (-22%) and an increase in renal vascular resistance (RVR) (+37%). In hypoxemic conditions, diuresis (-19%), GFR (-26%), and RBF (-35%) were decreased, whereas RVR increased (+33%). DPCPX administration hindered the hypoxemia-induced decrease in GFR and diuresis. However, RBF was still significantly decreased (-27%), whereas RVR increased (+22%). In all groups, the filtration fraction increased significantly. The overall results support the hypothesis that, in physiologic conditions, intrarenal adenosine plays a key role in regulating glomerular filtration in the neonatal period through preferential A1-mediated afferent vasoconstriction. During a hypoxemic stress, the A1-specific antagonist DPCPX only partially prevented the hypoxemia-induced changes, as illustrated by the elevated RVR and drop in RBF. These findings imply that the contribution of intrarenal adenosine to the acute adverse effects of hypoxemia might not be solely mediated via the A1 receptor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Acute myocardial dysfunction is a typical manifestation of septic shock. Experimentally, the administration of endotoxin [lipopolysacharride (LPS)] to laboratory animals is frequently used to study such dysfunction. However, a majority of studies used load-dependent indexes of cardiac function [including ejection fraction (EF) and maximal systolic pressure increment (dP/dt(max))], which do not directly explore cardiac inotropism. Therefore, we evaluated the direct effects of LPS on myocardial contractility, using left ventricular (LV) pressure-volume catheters in mice. Male BALB/c mice received an intraperitoneal injection of E. coli LPS (1, 5, 10, or 20 mg/kg). After 2, 6, or 20 h, cardiac function was analyzed in anesthetized, mechanically ventilated mice. All doses of LPS induced a significant drop in LV stroke volume and a trend toward reduced cardiac output after 6 h. Concomitantly, there was a significant decrease of LV preload (LV end-diastolic volume), with no apparent change in LV afterload (evaluated by effective arterial elastance and systemic vascular resistance). Load-dependent indexes of LV function were markedly reduced at 6 h, including EF, stroke work, and dP/dt(max). In contrast, there was no reduction of load-independent indexes of LV contractility, including end-systolic elastance (ejection phase measure of contractility) and the ratio dP/dt(max)/end-diastolic volume (isovolumic phase measure of contractility), the latter showing instead a significant increase after 6 h. All changes were transient, returning to baseline values after 20 h. Therefore, the alterations of cardiac function induced by LPS are entirely due to altered loading conditions, but not to reduced contractility, which may instead be slightly increased.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Acute normocapnic hypoxemia can cause functional renal insufficiency by increasing renal vascular resistance (RVR), leading to renal hypoperfusion and decreased glomerular filtration rate (GFR). Insulin-like growth factor 1 (IGF-1) activity is low in fetuses and newborns and further decreases during hypoxia. IGF-1 administration to humans and adult animals induces pre- and postglomerular vasodilation, thereby increasing GFR and renal blood flow (RBF). A potential protective effect of IGF-1 on renal function was evaluated in newborn rabbits with hypoxemia-induced renal insufficiency. Renal function and hemodynamic parameters were assessed in 17 anesthetized and mechanically ventilated newborn rabbits. After hypoxemia stabilization, saline solution (time control) or IGF-1 (1 mg/kg) was given as an intravenous (i.v.) bolus, and renal function was determined for six 30-min periods. Normocapnic hypoxemia significantly increased RVR (+16%), leading to decreased GFR (-14%), RBF (-19%) and diuresis (-12%), with an increased filtration fraction (FF). Saline solution resulted in a worsening of parameters affected by hypoxemia. Contrarily, although mean blood pressure decreased slightly but significantly, IGF-1 prevented a further increase in RVR, with subsequent improvement of GFR, RBF and diuresis. FF indicated relative postglomerular vasodilation. Although hypoxemia-induced acute renal failure was not completely prevented, IGF-1 elicited efferent vasodilation, thereby precluding a further decline in renal function.