965 resultados para MARKOV CHAIN MONTE CARLO


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automated feature extraction and correspondence determination is an extremely important problem in the face recognition community as it often forms the foundation of the normalisation and database construction phases of many recognition and verification systems. This paper presents a completely automatic feature extraction system based upon a modified volume descriptor. These features form a stable descriptor for faces and are utilised in a reversible jump Markov chain Monte Carlo correspondence algorithm to automatically determine correspondences which exist between faces. The developed system is invariant to changes in pose and occlusion and results indicate that it is also robust to minor face deformations which may be present with variations in expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quality oriented management systems and methods have become the dominant business and governance paradigm. From this perspective, satisfying customers’ expectations by supplying reliable, good quality products and services is the key factor for an organization and even government. During recent decades, Statistical Quality Control (SQC) methods have been developed as the technical core of quality management and continuous improvement philosophy and now are being applied widely to improve the quality of products and services in industrial and business sectors. Recently SQC tools, in particular quality control charts, have been used in healthcare surveillance. In some cases, these tools have been modified and developed to better suit the health sector characteristics and needs. It seems that some of the work in the healthcare area has evolved independently of the development of industrial statistical process control methods. Therefore analysing and comparing paradigms and the characteristics of quality control charts and techniques across the different sectors presents some opportunities for transferring knowledge and future development in each sectors. Meanwhile considering capabilities of Bayesian approach particularly Bayesian hierarchical models and computational techniques in which all uncertainty are expressed as a structure of probability, facilitates decision making and cost-effectiveness analyses. Therefore, this research investigates the use of quality improvement cycle in a health vii setting using clinical data from a hospital. The need of clinical data for monitoring purposes is investigated in two aspects. A framework and appropriate tools from the industrial context are proposed and applied to evaluate and improve data quality in available datasets and data flow; then a data capturing algorithm using Bayesian decision making methods is developed to determine economical sample size for statistical analyses within the quality improvement cycle. Following ensuring clinical data quality, some characteristics of control charts in the health context including the necessity of monitoring attribute data and correlated quality characteristics are considered. To this end, multivariate control charts from an industrial context are adapted to monitor radiation delivered to patients undergoing diagnostic coronary angiogram and various risk-adjusted control charts are constructed and investigated in monitoring binary outcomes of clinical interventions as well as postintervention survival time. Meanwhile, adoption of a Bayesian approach is proposed as a new framework in estimation of change point following control chart’s signal. This estimate aims to facilitate root causes efforts in quality improvement cycle since it cuts the search for the potential causes of detected changes to a tighter time-frame prior to the signal. This approach enables us to obtain highly informative estimates for change point parameters since probability distribution based results are obtained. Using Bayesian hierarchical models and Markov chain Monte Carlo computational methods, Bayesian estimators of the time and the magnitude of various change scenarios including step change, linear trend and multiple change in a Poisson process are developed and investigated. The benefits of change point investigation is revisited and promoted in monitoring hospital outcomes where the developed Bayesian estimator reports the true time of the shifts, compared to priori known causes, detected by control charts in monitoring rate of excess usage of blood products and major adverse events during and after cardiac surgery in a local hospital. The development of the Bayesian change point estimators are then followed in a healthcare surveillances for processes in which pre-intervention characteristics of patients are viii affecting the outcomes. In this setting, at first, the Bayesian estimator is extended to capture the patient mix, covariates, through risk models underlying risk-adjusted control charts. Variations of the estimator are developed to estimate the true time of step changes and linear trends in odds ratio of intensive care unit outcomes in a local hospital. Secondly, the Bayesian estimator is extended to identify the time of a shift in mean survival time after a clinical intervention which is being monitored by riskadjusted survival time control charts. In this context, the survival time after a clinical intervention is also affected by patient mix and the survival function is constructed using survival prediction model. The simulation study undertaken in each research component and obtained results highly recommend the developed Bayesian estimators as a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances as well as industrial and business contexts. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The empirical results and simulations indicate that the Bayesian estimators are a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The advantages of the Bayesian approach seen in general context of quality control may also be extended in the industrial and business domains where quality monitoring was initially developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a methodology for designing experiments for efficiently estimating the parameters of models with computationally intractable likelihoods. The approach combines a commonly used methodology for robust experimental design, based on Markov chain Monte Carlo sampling, with approximate Bayesian computation (ABC) to ensure that no likelihood evaluations are required. The utility function considered for precise parameter estimation is based upon the precision of the ABC posterior distribution, which we form efficiently via the ABC rejection algorithm based on pre-computed model simulations. Our focus is on stochastic models and, in particular, we investigate the methodology for Markov process models of epidemics and macroparasite population evolution. The macroparasite example involves a multivariate process and we assess the loss of information from not observing all variables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of Bayesian methodologies for solving optimal experimental design problems has increased. Many of these methods have been found to be computationally intensive for design problems that require a large number of design points. A simulation-based approach that can be used to solve optimal design problems in which one is interested in finding a large number of (near) optimal design points for a small number of design variables is presented. The approach involves the use of lower dimensional parameterisations that consist of a few design variables, which generate multiple design points. Using this approach, one simply has to search over a few design variables, rather than searching over a large number of optimal design points, thus providing substantial computational savings. The methodologies are demonstrated on four applications, including the selection of sampling times for pharmacokinetic and heat transfer studies, and involve nonlinear models. Several Bayesian design criteria are also compared and contrasted, as well as several different lower dimensional parameterisation schemes for generating the many design points.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advances in algorithms for approximate sampling from a multivariable target function have led to solutions to challenging statistical inference problems that would otherwise not be considered by the applied scientist. Such sampling algorithms are particularly relevant to Bayesian statistics, since the target function is the posterior distribution of the unobservables given the observables. In this thesis we develop, adapt and apply Bayesian algorithms, whilst addressing substantive applied problems in biology and medicine as well as other applications. For an increasing number of high-impact research problems, the primary models of interest are often sufficiently complex that the likelihood function is computationally intractable. Rather than discard these models in favour of inferior alternatives, a class of Bayesian "likelihoodfree" techniques (often termed approximate Bayesian computation (ABC)) has emerged in the last few years, which avoids direct likelihood computation through repeated sampling of data from the model and comparing observed and simulated summary statistics. In Part I of this thesis we utilise sequential Monte Carlo (SMC) methodology to develop new algorithms for ABC that are more efficient in terms of the number of model simulations required and are almost black-box since very little algorithmic tuning is required. In addition, we address the issue of deriving appropriate summary statistics to use within ABC via a goodness-of-fit statistic and indirect inference. Another important problem in statistics is the design of experiments. That is, how one should select the values of the controllable variables in order to achieve some design goal. The presences of parameter and/or model uncertainty are computational obstacles when designing experiments but can lead to inefficient designs if not accounted for correctly. The Bayesian framework accommodates such uncertainties in a coherent way. If the amount of uncertainty is substantial, it can be of interest to perform adaptive designs in order to accrue information to make better decisions about future design points. This is of particular interest if the data can be collected sequentially. In a sense, the current posterior distribution becomes the new prior distribution for the next design decision. Part II of this thesis creates new algorithms for Bayesian sequential design to accommodate parameter and model uncertainty using SMC. The algorithms are substantially faster than previous approaches allowing the simulation properties of various design utilities to be investigated in a more timely manner. Furthermore the approach offers convenient estimation of Bayesian utilities and other quantities that are particularly relevant in the presence of model uncertainty. Finally, Part III of this thesis tackles a substantive medical problem. A neurological disorder known as motor neuron disease (MND) progressively causes motor neurons to no longer have the ability to innervate the muscle fibres, causing the muscles to eventually waste away. When this occurs the motor unit effectively ‘dies’. There is no cure for MND, and fatality often results from a lack of muscle strength to breathe. The prognosis for many forms of MND (particularly amyotrophic lateral sclerosis (ALS)) is particularly poor, with patients usually only surviving a small number of years after the initial onset of disease. Measuring the progress of diseases of the motor units, such as ALS, is a challenge for clinical neurologists. Motor unit number estimation (MUNE) is an attempt to directly assess underlying motor unit loss rather than indirect techniques such as muscle strength assessment, which generally is unable to detect progressions due to the body’s natural attempts at compensation. Part III of this thesis builds upon a previous Bayesian technique, which develops a sophisticated statistical model that takes into account physiological information about motor unit activation and various sources of uncertainties. More specifically, we develop a more reliable MUNE method by applying marginalisation over latent variables in order to improve the performance of a previously developed reversible jump Markov chain Monte Carlo sampler. We make other subtle changes to the model and algorithm to improve the robustness of the approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The selection of optimal camera configurations (camera locations, orientations etc.) for multi-camera networks remains an unsolved problem. Previous approaches largely focus on proposing various objective functions to achieve different tasks. Most of them, however, do not generalize well to large scale networks. To tackle this, we introduce a statistical formulation of the optimal selection of camera configurations as well as propose a Trans-Dimensional Simulated Annealing (TDSA) algorithm to effectively solve the problem. We compare our approach with a state-of-the-art method based on Binary Integer Programming (BIP) and show that our approach offers similar performance on small scale problems. However, we also demonstrate the capability of our approach in dealing with large scale problems and show that our approach produces better results than 2 alternative heuristics designed to deal with the scalability issue of BIP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction and aims: Individual smokers from disadvantaged backgrounds are less likely to quit, which contributes to widening inequalities in smoking. Residents of disadvantaged neighbourhoods are more likely to smoke, and neighbourhood inequalities in smoking may also be widening because of neighbourhood differences in rates of cessation. This study examined the association between neighbourhood disadvantage and smoking cessation and its relationship with neighbourhood inequalities in smoking. Design and methods: A multilevel longitudinal study of mid-aged (40-67 years) residents (n=6915) of Brisbane, Australia, who lived in the same neighbourhoods (n=200) in 2007 and 2009. Neighbourhood inequalities in cessation and smoking were analysed using multilevel logistic regression and Markov chain Monte Carlo simulation. Results: After adjustment for individual-level socioeconomic factors, the probability of quitting smoking between 2007 and 2009 was lower for residents of disadvantaged neighbourhoods (9.0%-12.8%) than their counterparts in more advantaged neighbourhoods (20.7%-22.5%). These inequalities in cessation manifested in widening inequalities in smoking: in 2007 the between-neighbourhood variance in rates of smoking was 0.242 (p≤0.001) and in 2009 it was 0.260 (p≤0.001). In 2007, residents of the most disadvantaged neighbourhoods were 88% (OR 1.88, 95% CrI 1.41-2.49) more likely to smoke than residents in the least disadvantaged neighbourhoods: the corresponding difference in 2009 was 98% (OR 1.98 95% CrI 1.48-2.66). Conclusion: Fundamentally, social and economic inequalities at the neighbourhood and individual-levels cause smoking and cessation inequalities. Reducing these inequalities will require comprehensive, well-funded, and targeted tobacco control efforts and equity based policies that address the social and economic determinants of smoking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A major priority for cancer control agencies is to reduce geographical inequalities in cancer outcomes. While the poorer breast cancer survival among socioeconomically disadvantaged women is well established, few studies have looked at the independent contribution that area- and individual-level factors make to breast cancer survival. Here we examine relationships between geographic remoteness, area-level socioeconomic disadvantage and breast cancer survival after adjustment for patients’ socio- demographic characteristics and stage at diagnosis. Multilevel logistic regression and Markov chain Monte Carlo simulation were used to analyze 18 568 breast cancer cases extracted from the Queensland Cancer Registry for women aged 30 to 70 years diagnosed between 1997 and 2006 from 478 Statistical Local Areas in Queensland, Australia. Independent of individual-level factors, area-level disadvantage was associated with breast-cancer survival (p=0.032). Compared to women in the least disadvantaged quintile (Quintile 5), women diagnosed while resident in one of the remaining four quintiles had significantly worse survival (OR 1.23, 1.27, 1.30, 1.37 for Quintiles 4, 3, 2 and 1 respectively).) Geographic remoteness was not related to lower survival after multivariable adjustment. There was no evidence that the impact of area-level disadvantage varied by geographic remoteness. At the individual level, Indigenous status, blue collar occupations and advanced disease were important predictors of poorer survival. A woman’s survival after a diagnosis of breast cancer depends on the socio-economic characteristics of the area where she lives, independently of her individual-level characteristics. It is crucial that the underlying reasons for these inequalities be identified to appropriately target policies, resources and effective intervention strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a new simulation methodology in order to obtain exact or approximate Bayesian inference for models for low-valued count time series data that have computationally demanding likelihood functions. The algorithm fits within the framework of particle Markov chain Monte Carlo (PMCMC) methods. The particle filter requires only model simulations and, in this regard, our approach has connections with approximate Bayesian computation (ABC). However, an advantage of using the PMCMC approach in this setting is that simulated data can be matched with data observed one-at-a-time, rather than attempting to match on the full dataset simultaneously or on a low-dimensional non-sufficient summary statistic, which is common practice in ABC. For low-valued count time series data we find that it is often computationally feasible to match simulated data with observed data exactly. Our particle filter maintains $N$ particles by repeating the simulation until $N+1$ exact matches are obtained. Our algorithm creates an unbiased estimate of the likelihood, resulting in exact posterior inferences when included in an MCMC algorithm. In cases where exact matching is computationally prohibitive, a tolerance is introduced as per ABC. A novel aspect of our approach is that we introduce auxiliary variables into our particle filter so that partially observed and/or non-Markovian models can be accommodated. We demonstrate that Bayesian model choice problems can be easily handled in this framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel in-cylinder pressure method for determining ignition delay has been proposed and demonstrated. This method proposes a new Bayesian statistical model to resolve the start of combustion, defined as being the point at which the band-pass in-cylinder pressure deviates from background noise and the combustion resonance begins. Further, it is demonstrated that this method is still accurate in situations where there is noise present. The start of combustion can be resolved for each cycle without the need for ad hoc methods such as cycle averaging. Therefore, this method allows for analysis of consecutive cycles and inter-cycle variability studies. Ignition delay obtained by this method and by the net rate of heat release have been shown to give good agreement. However, the use of combustion resonance to determine the start of combustion is preferable over the net rate of heat release method because it does not rely on knowledge of heat losses and will still function accurately in the presence of noise. Results for a six-cylinder turbo-charged common-rail diesel engine run with neat diesel fuel at full, three quarters and half load have been presented. Under these conditions the ignition delay was shown to increase as the load was decreased with a significant increase in ignition delay at half load, when compared with three quarter and full loads.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The emergence of pseudo-marginal algorithms has led to improved computational efficiency for dealing with complex Bayesian models with latent variables. Here an unbiased estimator of the likelihood replaces the true likelihood in order to produce a Bayesian algorithm that remains on the marginal space of the model parameter (with latent variables integrated out), with a target distribution that is still the correct posterior distribution. Very efficient proposal distributions can be developed on the marginal space relative to the joint space of model parameter and latent variables. Thus psuedo-marginal algorithms tend to have substantially better mixing properties. However, for pseudo-marginal approaches to perform well, the likelihood has to be estimated rather precisely. This can be difficult to achieve in complex applications. In this paper we propose to take advantage of multiple central processing units (CPUs), that are readily available on most standard desktop computers. Here the likelihood is estimated independently on the multiple CPUs, with the ultimate estimate of the likelihood being the average of the estimates obtained from the multiple CPUs. The estimate remains unbiased, but the variability is reduced. We compare and contrast two different technologies that allow the implementation of this idea, both of which require a negligible amount of extra programming effort. The superior performance of this idea over the standard approach is demonstrated on simulated data from a stochastic volatility model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis introduced Bayesian statistics as an analysis technique to isolate resonant frequency information in in-cylinder pressure signals taken from internal combustion engines. Applications of these techniques are relevant to engine design (performance and noise), energy conservation (fuel consumption) and alternative fuel evaluation. The use of Bayesian statistics, over traditional techniques, allowed for a more in-depth investigation into previously difficult to isolate engine parameters on a cycle-by-cycle basis. Specifically, these techniques facilitated the determination of the start of pre-mixed and diffusion combustion and for the in-cylinder temperature profile to be resolved on individual consecutive engine cycles. Dr Bodisco further showed the utility of the Bayesian analysis techniques by applying them to in-cylinder pressure signals taken from a compression ignition engine run with fumigated ethanol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil-based emissions of nitrous oxide (N2O), a well-known greenhouse gas, have been associated with changes in soil water-filled pore space (WFPS) and soil temperature in many previous studies. However, it is acknowledged that the environment-N2O relationship is complex and still relatively poorly unknown. In this article, we employed a Bayesian model selection approach (Reversible jump Markov chain Monte Carlo) to develop a data-informed model of the relationship between daily N2O emissions and daily WFPS and soil temperature measurements between March 2007 and February 2009 from a soil under pasture in Queensland, Australia, taking seasonal factors and time-lagged effects into account. The model indicates a very strong relationship between a hybrid seasonal structure and daily N2O emission, with the latter substantially increased in summer. Given the other variables in the model, daily soil WFPS, lagged by a week, had a negative influence on daily N2O; there was evidence of a nonlinear positive relationship between daily soil WFPS and daily N2O emission; and daily soil temperature tended to have a linear positive relationship with daily N2O emission when daily soil temperature was above a threshold of approximately 19°C. We suggest that this flexible Bayesian modeling approach could facilitate greater understanding of the shape of the covariate-N2O flux relation and detection of effect thresholds in the natural temporal variation of environmental variables on N2O emission.