930 resultados para MAGNETOELASTIC ACOUSTIC-EMISSION
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In 2010, the Brazilian forest sector is represented by about 30,000 companies producing US$ 21 billion annually and account for approximately 5% of the gross domestic product (GDP) in the country. The sanding process is highly demanded in various stages of industrialization of the wood, when there is a need for a better quality surface finishing. The objective of this work was to analyze the influence of cutting speed and sandpaper granulometry on both the surface finishing of pieces of Eucalyptus grandis processed through tubular sanding and on the sanding efforts (force and power of sanding). Four cutting speeds were used (19.5, 22.7, 26 and 28.1 m/s), one advance speed (16 m/min) and three sets of sandpaper (80-100, 80-120 and 100-120) being one for chipping and another for finishing, respectively. A central data acquisition system was set up to capture the variables (cutting power, acoustic emission and vibration) in real time. The cutting force was obtained indirectly, through a frequency inverter. The roughness of the parts was measured by a roughness meter before and after sanding. The highest cutting speed used (28.1 m/s) consumed more power and generated more acoustic emission among the four speeds tested. Regarding the vibration, the lower cutting speed (19.5 m/ s) generated the highest vibration in the sander machine. It is concluded that the range of 100-120 sandpapers resulted in values of average roughness (Ra) lower than the other sets of sandpaper used, as it resulted in better surface finishing.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq)
Resumo:
Composite porcelain enamels are inorganic coatings for metallic components based on a special ceramic-vitreous matrix in which specific additives are randomly dispersed. The ceramic-vitreous matrix is made by a mixture of various raw materials and elements and in particular it is based on boron-silicate glass added with metal oxides(1) of titanium, zinc, tin, zirconia, alumina, ecc. These additions are often used to improve and enhance some important performances such as corrosion(2) and wear resistance, mechanical strength, fracture toughness and also aesthetic functions. The coating process, called enamelling, depends on the nature of the surface, but also on the kind of the used porcelain enamel. For metal sheets coatings two industrial processes are actually used: one based on a wet porcelain enamel and another based on a dry-silicone porcelain enamel. During the firing process, that is performed at about 870°C in the case of a steel substrate, the enamel raw material melts and interacts with the metal substrate so enabling the formation of a continuous varying structure. The interface domain between the substrate and the external layer is made of a complex material system where the ceramic vitreous and the metal constituents are mixed. In particular four main regions can be identified, (i) the pure metal region, (ii) the region where the metal constituents are dominant compared with the ceramic vitreous components, (iii) the region where the ceramic vitreous constituents are dominant compared with the metal ones, and the fourth region (iv) composed by the pure ceramic vitreous material. It has also to be noticed the presence of metallic dendrites that hinder the substrate and the external layer passing through the interphase region. Each region of the final composite structure plays a specific role: the metal substrate has mainly the structural function, the interphase region and the embedded dendrites guarantee the adhesion of the external vitreous layer to the substrate and the external vitreous layer is characterized by an high tribological, corrosion and thermal shock resistance. Such material, due to its internal composition, functionalization and architecture can be considered as a functionally graded composite material. The knowledge of the mechanical, tribological and chemical behavior of such composites is not well established and the research is still in progress. In particular the mechanical performances data about the composite coating are not jet established. In the present work the Residual Stresses, the Young modulus and the First Crack Failure of the composite porcelain enamel coating are studied. Due to the differences of the porcelain composite enamel and steel thermal properties the enamelled steel sheets have residual stresses: compressive residual stress acts on the coating and tensile residual stress acts on the steel sheet. The residual stresses estimation has been performed by measuring the curvature of rectangular one-side coated specimens. The Young modulus and the First Crack Failure (FCF) of the coating have been estimated by four point bending tests (3-7) monitored by means of the Acoustic Emission (AE) technique(5,6). In particular the AE information has been used to identify, during the bending tests, the displacement domain over which no coating failure occurs (Free Failure Zone, FFZ). In the FFZ domain, the Young modulus has been estimated according to ASTM D6272-02. The FCF has been calculated as the ratio between the displacement at the first crack of the coating and the coating thickness on the cracked side. The mechanical performances of the tested coated specimens have also been related and discussed to respective microstructure and surface characteristics by double entry charts.
Resumo:
A Micro-opto-mechanical systems (MOMS) based technology for the fabrication of ultrasonic probes on optical fiber is presented. Thanks to the high miniaturization level reached, the realization of an ultrasonic system constituted by ultrasonic generating and detecting elements, suitable for minimally invasive applications or Non Destructive Evaluation (NDE) of materials at high resolution, is demonstrated. The ultrasonic generation is realized by irradiating a highly absorbing carbon film patterned on silicon micromachined structures with a nanosecond pulsed laser source, generating a mechanical shock wave due to the thermal expansion of the film induced by optical energy conversion into heat. The short duration of the pulsed laser, together with an appropriate emitter design, assure high frequency and wide band ultrasonic generation. The acoustic detection is also realized on a MOMS device using an interferometric receiver, fabricated with a Fabry-Perot optical cavity realized by means of a patterned SU-8 and two Al metallization levels. In order to detect the ultrasonic waves, the cavity is interrogated by a laser beam measuring the reflected power with a photodiode. Various issues related to the design and fabrication of these acoustic probes are investigated in this thesis. First, theoretical models are developed to characterize the opto-acoustic behavior of the devices and estimate their expected acoustic performances. Tests structures are realized to derive the relevant physical parameters of the materials constituting the MOMS devices and determine the conditions theoretically assuring the best acoustic emission and detection performances. Moreover, by exploiting the models and the theoretical results, prototypes of acoustic probes are designed and their fabrication process developed by means of an extended experimental activity.
Resumo:
The present work aims for investigate the influence of electrospun Nylon 6,6 nanofibrous mat on the behavior of composite laminates. The main idea is that nanofibrous interleaved into particular ply-to-ply interfaces of a laminate can lead to significant improvements of mechanical properties and delamination/damage resistance. Experimental campaigns were performed to investigate how nanofibers affect both the static and dynamic behavior of the laminate in which they are interleaved. Fracture mechanics tests were initially performed on virgin and 8 different configuration of nanomodified specimens. The purposes of this first step of the work are to understand which geometrical parameters of the nanointerleave influence the behavior of the laminate and, to find the optimal architecture of the nanofibrous mat in order to obtain the best reinforcement. In particular, 3 morphological parameters are investigated: nanofibers diameter, nanofibers orientation and thickness of the reinforce. Two different values for each parameter have been used, and it leads to 8 different configurations of nanoreinforce. Acoustic Emission technique is also used to monitor the tests. Once the optimum configuration has been found, attention is focused on the mechanism of reinforce played by the nanofibers during static and dynamic tests. Low velocity impacts and free decay tests are performed to attest the effect of nanointerlayers and the reinforce mechanism during the dynamic loads. Bump tests are performed before and after the impact on virgin and two different nanomodified laminates configurations. The authors focused their attention on: vibrational behavior, low velocity impact response and post-impact vibration behavior of the nano-interleaved laminates with respect to the response of non-nanomodified ones. Experiments attest that nanofibers significantly strength the delamination resistance of the laminates and increase some mechanical properties. It is demonstrated that the nanofibers are capable to continue to carry on the loads even when the matrix around them is broken.
Resumo:
This paper shows the preliminary results of the development and application of a procedure to filter the Acoustic Emission (AE) signals to distinguish between AE signals coming from friction and AE signals coming from concrete cracking. These signals were recorded during the trainings of an experiment carried out on a reinforced concrete frame subjected to dynamic loadings with the shaking table of the University of Granada (Spain). Discrimination between friction and cracking AE signals is the base to develop a successful procedure and damage index based on AE testing for health monitoring of RC structures subjected to earthquakes.
Resumo:
InsideFood explicitly aims at measuring food microstructure, the spatial distribution of food components within foods, with state of the art tomographic, spectroscopic and texture measurement techniques including X-ray micro-and nano CT, MRI,OCT, NMR, TRS and SRS, and acoustic emission. Nutritional quality (sugar and gluten free cereal products), sensory quality (texture of all foods) and safety (foreign material detection in cereal products) are considered. Online and inline techniques including NMR, MRI, TRS, SRS and X-ray imaging to visualise and monitor structure will be developed.
Resumo:
This paper presents analysis and discussion of the b- and ib-values calculated from the acoustic emission (AE) signals recorded during dynamic shake-table tests conducted on a reinforced concrete (RC) frame subjected to several uniaxial seismic simulations of increasing intensity until collapse. The intensity of shaking was controlled by the peak acceleration applied to the shake-table in each seismic simulation, and it ranged from 0.08 to 0.47 times the acceleration of gravity. The numerous spurious signals not related to concrete damage that inevitably contaminate AE measurements obtained from complex dynamic shake-table tests were properly filtered with an RMS filter and the use of guard sensors. Comparing the b- and ib-values calculated through the tests with the actual level of macro-cracking and damage observed during testing, it was concluded that the limit value of 0.05 proposed in previous research to determine the onset of macro-cracks should be revised in the case of earthquake-type dynamic loading. Finally, the b- and ibvalues were compared with the damage endured by the RC frame evaluated both visually and quantitatively in terms of the inter-story drift index.
Resumo:
Pesquisadores e indústrias de todo o mundo estão firmemente comprometidos com o propósito de fazer o processo de usinagem ser precisamente veloz e produtivo. A forte concorrência mundial gerou a procura por processos de usinagem econômicos, com grande capacidade de produção de cavacos e que produzam peças com elevada qualidade. Dentre as novas tecnologias que começaram a ser empregadas, e deve tornar-se o caminho certo a ser trilhado na busca da competitividade em curto espaço de tempo, está a tecnologia de usinagem com altas velocidades (HSM de High Speed Machining). A tecnologia HSM surge como componente essencial na otimização dos esforços para manutenção e aumento da competitividade global das empresas. Durante os últimos anos a usinagem com alta velocidade tem ganhado grande importância, sendo dada uma maior atenção ao desenvolvimento e à disponibilização no mercado de máquinas-ferramentas com rotações muito elevadas (20.000 - 100.000 rpm). O processo de usinagem com alta velocidade está sendo usado não apenas para ligas de alumínio e cobre, mas também para materiais de difícil usinabilidade, como os aços temperados e superligas à base de níquel. Porém, quando se trata de materiais de difícil corte, têm-se observado poucas publicações, principalmente no processo de torneamento. Mas, antes que a tecnologia HSM possa ser empregada de uma forma econômica, todos os componentes envolvidos no processo de usinagem, incluindo a máquina, o eixo-árvore, a ferramenta e o pessoal, precisam estar afinados com as peculiaridades deste novo processo. No que diz respeito às máquinas-ferramenta, isto significa que elas têm que satisfazer requisitos particulares de segurança. As ferramentas, devido à otimização de suas geometrias, substratos e revestimentos, contribuem para o sucesso deste processo. O presente trabalho objetiva estudar o comportamento de diversas geometrias ) de insertos de cerâmica (Al2O3 + SiCw e Al2O3 + TIC) e PCBN com duas concentrações de CBN na forma padrão, assim como modificações na geometria das arestas de corte empregadas em torneamento com alta velocidade em superligas à base de níquel (Inconel 718 e Waspaloy). Os materiais foram tratados termicamente para dureza de 44 e 40 HRC respectivamente, e usinados sob condição de corte a seco e com utilização da técnica de mínima quantidade de lubrificante (minimal quantity lubricant - MQL) visando atender requisitos ambientais. As superligas à base de níquel são conhecidas como materiais de difícil usinabilidade devido à alta dureza, alta resistência mecânica em alta temperatura, afinidade para reagir com materiais da ferramenta e baixa condutividade térmica. A usinagem de superligas afeta negativamente a integridade da peça. Por essa razão, cuidados especiais devem ser tomados para assegurar a vida da ferramenta e a integridade superficial de componentes usinados por intermédio de controle dos principais parâmetros de usinagem. Experimentos foram realizados sob diversas condições de corte e geometrias de ferramentas para avaliação dos parâmetros: força de corte, temperatura, emissão acústica e integridade superficial (rugosidade superficial, tensão residual, microdureza e microestrutura) e mecanismos de desgaste. Mediante os resultados apresentados, recomenda-se à geometria de melhor desempenho nos parâmetros citados e confirma-se a eficiência da técnica MQL. Dentre as ferramentas e geometrias testadas, a que apresentou melhor desempenho foi a ferramenta cerâmica CC650 seguida da ferramenta cerâmica CC670 ambas com formato redondo e geometria 2 (chanfro em T de 0,15 x 15º com raio de aresta de 0,03 mm).
Resumo:
The development of sensing devices is one of the instrumentation fields that has grown rapidly in the last decade. Corresponding to the swift advance in the development of microelectronic sensors, optical fibre sensors are widely investigated because of their advantageous properties over the electronics sensors such as their wavelength multiplexing capability and high sensitivity to temperature, pressure, strain, vibration and acoustic emission. Moreover, optical fibre sensors are more attractive than the electronics sensors as they can perform distributed sensing, in terms of covering a reasonably large area using a single piece of fibre. Apart from being a responsive element in the sensing field, optical fibre possesses good assets in generating, distributing, processing and transmitting signals in the future broadband information network. These assets include wide bandwidth, high capacity and low loss that grant mobility and flexibility for wireless access systems. Among these core technologies, the fibre optic signal processing and transmission of optical and radio frequency signals have been the subjects of study in this thesis. Based on the intrinsic properties of single-mode optical fibre, this thesis aims to exploit the fibre characteristics such as thermal sensitivity, birefringence, dispersion and nonlinearity, in the applications of temperature sensing and radio-over-fibre systems. By exploiting the fibre thermal sensitivity, a fully distributed temperature sensing system consisting of an apodised chirped fibre Bragg grating has been implemented. The proposed system has proven to be efficient in characterising grating and providing the information of temperature variation, location and width of the heat source applied in the area under test.To exploit the fibre birefringence, a fibre delay line filter using a single high-birefringence optical fibre structure has been presented. The proposed filter can be reconfigured and programmed by adjusting the input azimuth of launched light, as well as the strength and direction of the applied coupling, to meet the requirements of signal processing for different purposes in microwave photonic and optical filtering applications. To exploit the fibre dispersion and nonlinearity, experimental investigations have been carried out to study their joint effect in high power double-sideband and single-sideband modulated links with the presence of fibre loss. The experimental results have been theoretically verified based on the in-house implementation of the split-step Fourier method applied to the generalised nonlinear Schrödinger equation. Further simulation study on the inter-modulation distortion in two-tone signal transmission has also been presented so as to show the effect of nonlinearity of one channel on the other. In addition to the experimental work, numerical simulations have also been carried out in all the proposed systems, to ensure that all the aspects concerned are comprehensively investigated.
Resumo:
A retificação, processo final de usinagem de uma peça, utiliza fluidos de corte com a finalidade de lubrificação, refrigeração e remoção de cavacos. No entanto, esses fluidos são extremamente agressivos com o meio. Com o avanço tecnológico a tendência mundial é produzir peças cada vez mais sofisticadas, com elevado grau de tolerância geométrica, dimensional, com bom acabamento superficial, com baixo custo e, principalmente, sem causar danos ao meio. Para tanto, ao processo de retificação está intrínseca a reciclagem do fluido de corte, que se destaca pelo seu custo. Através da variação da velocidade de avanço no processo de retificação cilíndrica externa do aço ABNT D6, racionalizando a aplicação de dois fluidos de corte e usando um rebolo superabrasivo de CBN (nitreto de boro cúbico) com ligante vitrificado, avaliaram-se os parâmetros de saída da força tangencial de corte, emissão acústica, rugosidade, circularidade, desgaste da ferramenta, tensão residual e a integridade superficial através da microscopia eletrônica de varredura (MEV) dos corpos-de-prova. Com a análise do desempenho do fluido, do rebolo e da velocidade de mergulho, encontraram-se as melhores condições de usinagem propiciando a diminuição do volume de fluido de corte e a diminuição do tempo de usinagem, sem prejudicar os parâmetros geométricos e dimensionais, o acabamento superficial e a integridade superficial dos componentes.
Resumo:
Axle bearing damage with possible catastrophic failures can cause severe disruptions or even dangerous derailments, potentially causing loss of human life and leading to significant costs for railway infrastructure managers and rolling stock operators. Consequently the axle bearing damage process has safety and economic implications on the exploitation of railways systems. Therefore it has been the object of intense attention by railway authorities as proved by the selection of this topic by the European Commission in calls for research proposals. The MAXBE Project (http://www.maxbeproject.eu/), an EU-funded project, appears in this context and its main goal is to develop and to demonstrate innovative and efficient technologies which can be used for the onboard and wayside condition monitoring of axle bearings. The MAXBE (interoperable monitoring, diagnosis and maintenance strategies for axle bearings) project focuses on detecting axle bearing failure modes at an early stage by combining new and existing monitoring techniques and on characterizing the axle bearing degradation process. The consortium for the MAXBE project comprises 18 partners from 8 member states, representing operators, railway administrations, axle bearing manufactures, key players in the railway community and experts in the field of monitoring, maintenance and rolling stock. The University of Porto is coordinating this research project that kicked-off in November 2012 and it is completed on October 2015. Both on-board and wayside systems are explored in the project since there is a need for defining the requirement for the onboard equipment and the range of working temperatures of the axle bearing for the wayside systems. The developed monitoring systems consider strain gauges, high frequency accelerometers, temperature sensors and acoustic emission. To get a robust technology to support the decision making of the responsible stakeholders synchronized measurements from onboard and wayside monitoring systems are integrated into a platform. Also extensive laboratory tests were performed to correlate the in situ measurements to the status of the axle bearing life. With the MAXBE project concept it will be possible: to contribute to detect at an early stage axle bearing failures; to create conditions for the operational and technical integration of axle bearing monitoring and maintenance in different European railway networks; to contribute to the standardization of the requirements for the axle bearing monitoring, diagnosis and maintenance. Demonstration of the developed condition monitoring systems was performed in Portugal in the Northern Railway Line with freight and passenger traffic with a maximum speed of 220 km/h, in Belgium in a tram line and in the UK. Still within the project, a tool for optimal maintenance scheduling and a smart diagnostic tool were developed. This paper presents a synthesis of the most relevant results attained in the project. The successful of the project and the developed solutions have positive impact on the reliability, availability, maintainability and safety of rolling stock and infrastructure with main focus on the axle bearing health.
Resumo:
The convergence between the recent developments in sensing technologies, data science, signal processing and advanced modelling has fostered a new paradigm to the Structural Health Monitoring (SHM) of engineered structures, which is the one based on intelligent sensors, i.e., embedded devices capable of stream processing data and/or performing structural inference in a self-contained and near-sensor manner. To efficiently exploit these intelligent sensor units for full-scale structural assessment, a joint effort is required to deal with instrumental aspects related to signal acquisition, conditioning and digitalization, and those pertaining to data management, data analytics and information sharing. In this framework, the main goal of this Thesis is to tackle the multi-faceted nature of the monitoring process, via a full-scale optimization of the hardware and software resources involved by the {SHM} system. The pursuit of this objective has required the investigation of both: i) transversal aspects common to multiple application domains at different abstraction levels (such as knowledge distillation, networking solutions, microsystem {HW} architectures), and ii) the specificities of the monitoring methodologies (vibrations, guided waves, acoustic emission monitoring). The key tools adopted in the proposed monitoring frameworks belong to the embedded signal processing field: namely, graph signal processing, compressed sensing, ARMA System Identification, digital data communication and TinyML.