820 resultados para MAGMATIC DEFORMATION
Resumo:
The Alhama de Murcia fault is a 85 km long oblique-slip fault, and is related to historical and instrumental seismic activity. A paleoseismic analysis of the Lorca-Totana sector of the fault containing MSK I=VIII historical earthquakes was made in order to identify and quantify its seismic potential. We present 1) the results of the neotectonic, structural and geomorphological analyses and, 2) the results of trenching. In the study area, the Alhama de Murcia fault forms a depressed corridor between two strands, the northwestern fault with morphological and structural features of a reverse component of slip, bounding the La Tercia range to the South, and the southeastern fault strand with evidence of sinistral oblique strike-slip movement. The offset along this latter fault trapped the sediments in transit from the La Tercia range towards the Guadalentín depression. The most recent of these sediments are arranged in three generations of alluvial fans and terraces. The first two trenches were dug in the most recent sediments across the southeastern fault strand. The results indicate a coseismic reverse fault deformation that involved the sedimentary sequence up to the intermediate alluvial fan and the Holocene terrace deposits. The sedimentary evolution observed in the trenches suggests an event of temporary damming of the Colmenar creek drainage to the South due to uplifting of the hanging wall during coseismic activation of the fault. Trench, structural and sedimentological features provide evidence of at least three coseismic events, which occurred after 125,000 yr. The minimum vertical slip rate along the fault is 0.06 mm/yr and the average recurrence period should not exceed 40,000 yr in accordance with the results obtained by fan topographic profiling. Further absolute dating is ongoing to constrain these estimates.
Resumo:
The Pyrenean mountain range is a slowly deforming belt with continuous and moderate seismic activity. To quantify its deformation field, we present the velocity field estimated from a GPS survey of the Pyrenees spanning 18 yr. The PotSis and ResPyr networks, including a total of 85 GPS sites, were installed and first measured in 1992 and 1995 1997, respectively, and remeasured in 2008 and 2010. We obtain a deformation field with velocities less than 1 mm yr−1 across the range. The estimated velocities for individual stations do not differ significantly from zero with 95 per cent confidence. Even so, we estimate a maximum extensional horizontal strain rate of 2.0 ± 1.7 nanostrain per year in a N S direction in the western part of the range. We do not interpret the vertical displacements due to their large uncertainties. In order to compare the horizontal strain rates with the seismic activity, we analyse a set of 194 focal mechanisms using three methods: (i) the 'r' factor relating their P and T axes, (ii) the stress tensors obtained by fault slip inversion and (iii) the strain-rate tensors. Stress and strain-rate tensors are estimated for: (i) the whole data set, (ii) the eastern and western parts of the range separately, and (iii) eight zones, which are defined based on the seismicity and the tectonic patterns of the Pyrenees. Each of these analyses reveals a lateral variation of the deformation style from compression and extension in the east to extension and strike-slip in the west of the range. Although the horizontal components of the strain-rate tensors estimated from the seismic data are slightly smaller in magnitude than those computed from the GPS velocity field, they are consistent within the 2σ uncertainties. Furthermore, the orientations of their principal axes agree with the mapped active faults.
Resumo:
This paper presents a new numerical program able to model syntectonic sedimentation. The new model combines a discrete element model of the tectonic deformation of a sedimentary cover and a process-based model of sedimentation in a single framework. The integration of these two methods allows us to include the simulation of both sedimentation and deformation processes in a single and more effective model. The paper describes briefly the antecedents of the program, Simsafadim-Clastic and a discrete element model, in order to introduce the methodology used to merge both programs to create the new code. To illustrate the operation and application of the program, analysis of the evolution of syntectonic geometries in an extensional environment and also associated with thrust fault propagation is undertaken. Using the new code, much more complex and realistic depositional structures can be simulated together with a more complex analysis of the evolution of the deformation within the sedimentary cover, which is seen to be affected by the presence of the new syntectonic sediments.
Resumo:
We introduce a new notion for the deformation of Gabor systems. Such deformations are in general nonlinear and, in particular, include the standard jitter error and linear deformations of phase space. With this new notion we prove a strong deformation result for Gabor frames and Gabor Riesz sequences that covers the known perturbation and deformation results. Our proof of the deformation theorem requires a new characterization of Gabor frames and Gabor Riesz sequences. It is in the style of Beurling's characterization of sets of sampling for bandlimited functions and extends significantly the known characterization of Gabor frames 'without inequalities' from lattices to non-uniform sets.
Resumo:
The aim of this study is to gain a better understanding of the structure and the deformation history of a NW-SE trending regional, crustal-scale shear structure in the Åland archipelago, SW Finland, called the Sottunga-Jurmo shear zone (SJSZ). Approaches involving e.g. structural geology, geochronology, geochemistry and metamorphic petrology were utilised in order to reconstruct the overall deformation history of the study area. The study therefore describes several features of the shear zone including structures, kinematics and lithologies within the study area, the ages of the different deformation phases (ductile to brittle) within the shear zone, as well as some geothermobarometric results. The results indicate that the SJSZ outlines a major crustal discontinuity between the extensively migmatized rocks NE of the shear zone and the unmigmatised, amphibolite facies rocks SW of the zone. The main SJSZ shows overall dextral lateral kinematics with a SW-side up vertical component and deformation partitioning into pure shear and simple shear dominated deformation styles that was intensified toward later stages of the deformation history. The deformation partitioning resulted in complex folding and refolding against the SW margin of the SJSZ, including conical and sheath folds, and in a formation of several minor strike-slip shear zones both parallel and conjugate to the main SJSZ in order to accommodate the regional transpressive stresses. Different deformation phases within the study area were dated by SIMS (zircon U-Pb), ID-TIMS (titanite U-Pb) and 40Ar/39Ar (pseudotachylyte wholerock) methods. The first deformation phase within the ca. 1.88 Ga rocks of the study area is dated at ca. 1.85 Ga, and the shear zone was reactivated twice within the ductile regime (at ca. 1.83 Ga and 1.79 Ga), during which the strain was successively increasingly partitioned into the main SJSZ and the minor shear zones. The age determinations suggest that the orogenic processes within the study area did not occur in a temporal continuum; instead, the metamorphic zircon rims and titanites show distinct, 10-20 Ma long breaks in deformation between phases of active deformation. The results of this study further imply slow cooling of the rocks through 600-700ºC so that at 1.79 Ga, 2 the temperature was still at least 600ºC. The highest recorded metamorphic pressures are 6.4-7.1 kbar. At the late stages or soon after the last ductile phase (ca. 1.79 Ga), relatively high-T mylonites and ultramylonites were formed, witnessing extreme deformation partitioning and high strain rates. After the rocks reached lower amphibolite facies to amphibolite-greenschist facies transitional conditions (ca. 500-550ºC), they cooled rapidly, probably due to crustal uplift and exhumation. The shear zone was reactivated at least once within the semi-brittle to brittle regime between ca. 1.79 Ga and 1.58 Ga, as evidenced by cataclasites and pseudotachylytes. In summary, the results of this study suggest that the Sottunga-Jurmo shear zone (and the South Finland shear zone) defines a major crustal discontinuity, and played a central role in accommodating the regional stresses during and after the Svecofennian orogeny.
Resumo:
A support ring of AISI 304L stainless steel that holds vertical, parallel wires arranged in a circle forming a cylinder is studied. The wires are attached to the ring with heat-induced shrinkage. When the ring is heated with a torch the heat affected zone tries to expand while the adjacent cool structure obstructs the expansion causing upsetting. During cooling, the ring shrinks smaller than its original size clamping the wires. The most important requirement for the ring is that it should be as round as possible and the deformations should occur as overall shrinkage in the ring diameter. A three-dimensional nonlinear transient sequential thermo-structural Abaqus model is used together with a Fortran code that enters the heat flux to each affected element. The local and overall deformations in one ring inflicted by the heating are studied with a small amount of inspection on residual stresses. A variety of different cases are chosen to be studied with the model constructed to provide directional knowledge; torch flux with the means of speed, location of the wires, heating location and structural factors. The decrease of heating speed increases heat flux that rises the temperature increasing shrinkage. In a single progressive heating uneven distribution of shrinkage appears to the start/end region that can be partially fixed with using speeded heating’s to strengthen the heating of that region. Location of the wires affect greatly to the caused shrinkage unlike heating location. The ring structure affects also greatly to the shrinkage; smaller diameter, bigger ring height, thinner thickness and greater number of wires increase shrinkage.
Resumo:
Atherosclerosis is a chronic and progressive disease of the vasculature. Increasing coronary atherosclerosis can lead to obstructive coronary artery disease (CAD) or myocardial infarction. Computed tomography angiography (CTA) allows noninvasive assessment of coronary anatomy and quantitation of atherosclerotic burden. Myocardial blood flow (MBF) can be accurately measured in absolute terms (mL/g/min) by positron emission tomography (PET) with [15O] H O as a radiotracer. We studied the coronary microvascular dysfunction as a risk factor for future coronary calcification in healthy young men by measuring the coronary flow reserve (CFR) which is the ratio between resting and hyperemic MBF. Impaired vasodilator function was not linked with accelerated atherosclerosis 11 years later. Currently, there is a global interest in quantitative PET perfusion imaging. We established optimal thresholds of [15O] H O PET perfusion for diagnosis of CAD (hyperemic MBF of 2.3 mL/g/min and CFR of 2.5) in the first multicenter study of this type (Turku, Amsterdam and Uppsala). In myocardial bridging a segment of the coronary artery travels inside the myocardium and can be seen as intramural course (CTA) or systolic compression (invasive coronary angiography). Myocardial bridging is frequently linked with proximal atherosclerotic plaques. We used quantitative [15O] H O PET perfusion to evaluate the hemodynamic effects of myocardial bridging. Myocardial bridging was not associated with decreased absolute MBF or increased atherosclerotic burden. Speckle tracking allows quantitative echocardiographic imaging of myocardial deformation. Speckle tracking during dobutamine stress echocardiography was feasible and comparable to subjective wall motion analysis in the diagnosis of CAD. In addition, it correctly risk stratified patients with multivessel disease and extensive ischemia.
Resumo:
Structures related to ductile siMple shear parallel to the Bankf ield-Tonbill Fault, define a 5km wide zone, the Barton Bay Deformation Zone. Structures present within this zone Include; simple shear fabrics S, C and C , asymmetric Z shaped folds with rotated axes, boudinage and pinch and swell structures and a subhorlzontal extension llneation. The most highly deformed rock is a gabbro mylonite which occurs in the fault zone. The deformation of this gabbro has been traced in stages from a protomylonite to an ultramylonite In which feldspar and chlorite grainslze has been reduced from over 100 microns to as little as 5 microns. Evidence from the mylonite and the surrounding structure indicates that deformation within the Barton Bay Deformation Zone is related to a regional simple shear zone, the Bankf ield-Tombill Fault. Movement along this shear zone was in a south over north oblique strike slip fashion with a dextral sense of displacement.
Resumo:
The quartzite microfabric found in the Lorrain Formation was studied across the La Cloche syncline, along a regional north-south transect along highway 6, near Whitefish Falls, Ontario. The complete stratigraphic sequence across the syncline is preserved, and is present on each fold limb. The lithostratigraphic units with the smallest grains size and lowest mica content are located close to the core of the fold, while coarser grained mica and feldspar rich units are situated at the northern and southern most extent of the transect. Deformation mechanisms vary with lithology and with position across the fold. Pressure solution appears to be the dominant deformation mechanism in the feldspathic, micaceous and ferruginous units. In the finer grained, mica poor white medium grained and cherty sandstone units, grain boundary migration (GBM) characteristics show dominance over those of pressure solution and show high amounts of fracturing which cut migrated boundaries and therefore post date GBM. All samples across the fold display a preferred orientation of quartz c-axes. The senses of asymmetry of fabrics are found to be similar across the syncline, with the exception of the ferruginous sandstone unit. Formation of these similar fabrics synmietries can not be the result of strain related to first order folding. The mica content appears to be related to the percentage of quartz lost due to pressure solution as a result of strain; the more mica present, the less quartz was lost. Calculations based on the shape of initial grains suggest that conservatively 30% of the quartz volume has been dissolved out of the Lorrain quartzite, and potentially migrated hundreds of meters to other members of the Huronian Supergroup as there was no meso or macroscopic evidence observed in outcrop.
Resumo:
The Paint Lake Deformation Zone (PLDZ), located within the Superior Province of Canada, demarcates a major structural and lithological break between the Onaman-Tashota Terrane to the north and the Beardmore-Geraldton Belt to the south. The PLDZ is an east-west trending lineament, approximately 50 km in length and up to 1 km in width, comprised of an early ductile component termed the Paint Lake Shear Zone and a late brittle component known as the Paint Lake Fault. Structures associated with PLDZ development including S-, C- and C'-fabrics, stretching lineations, slickensides, C-C' intersection lineations, Z-folds and kinkbands indicate that simple shear deformation dominated during a NW-SE compressional event. Movement along the PLDZ was in a dextral sense consisting of an early differential motion with southside- down and a later strike-slip motion. Although the locus of the PLDZ may in part be lithologically controlled, mylonitization which accompanied shear zone development is not dependent on the lithological type. Conglomerate, intermediate and mafic volcanic units exhibit similar mesoscopic and microscopic structures where transected by the PLDZ. Field mapping, supported by thin section analysis, defines five strain domains increasing in intensity of deformation from shear zone boundary to centre. A change in the dominant microstructural deformation mechanism from dislocation creep to diffusion creep is observed with increasing strain during mylonitization. C'-fabric development is temporally associated with this change. A decrease in the angular relationship between C- and C'-fabrics is observed upon attaining maximum strain intensity. Strain profiling of the PLDZ demonstrates the presence of an outer primary strain gradient which exhibits a simple profile and an inner secondary strain gradient which exhibits a more complex profile. Regionally metamorphosed lithologies of lower greenschist facies outside the PLDZ were subjected to retrograde metamorphism during deformation within the PLDZ.
Resumo:
The nature of this research is to investigate paleoseismic deformation of glacial soft sediments from three sampling sites throughout the Scottish Highlands; Arrat's Mills, Meikleour and Glen Roy. The paleoseismic evidence investigated in this research will provide a basis for applying criteria to soft sediment deformation structures, and the trigger mechanisms that create these structures. Micromorphology is the tool used in this to investigate paleoseismic deformation structures in thin section. Thin section analysis, (micromorphology) of glacial sediments from the three sampling sites is used to determine microscale evidence of past earthquakes that can be correlated to modem-day events and possibly lead to a better understanding of the impact of earthquakes throughout a range of sediment types. The significance of the three sampling locations is their proximity to two major active fault zones that cross Scotland. The fault zones are the Highland Boundary Fault and the Great Glen Fault, these two major faults that parallel each other and divide the country in half Sims (1975) used a set of seven criteria that identified soft sediment deformation structures created by a magnitude six earthquake in Cahfomia. Using criteria set forth by Sims (1975), the paleoseismic evidence can be correlated to the magnitude of the deformation structures found in the glacial sediments. This research determined that the microstructures at Arrat's Mill, Meikleour and Glen Roy are consistent with a seismically induced origin. It has also been demonstrated that, even without the presence of macrostructures, the use of micromorphology techniques in detecting such activity within sediments is of immense value.
Resumo:
The steeply dipping, isoclinally folded early Precambrian (Archean) Berry Creek Metavolcanic Complex comprises primary to resedimented pyroclastic, epiclastic and autoclastic deposits. Tephra erupted from central volcanic edifices was dumped by mass flow mechanisms into peripheral volcanosedimentary depressions. Sedimentation has been essentially contemporaneous with eruption and transport of tephra. The monolithic to heterolithic tuffaceous horizons are interpreted as subaerial to subaqueous pumice and ash flows, secondary debris flows, lahars, slump deposits and turbidites. Monolithic debris flows, derived from crumble breccia and dcme talus, formed during downslope collapse and subsequent gravity flowage. Heterolithic tuff, lahars and lava flow morphologies suggest at least temporary emergence of the edifice. Local collapse may have accompanied pyroclastic volcanism. The tephra, produced by hydromagmatic to magmatic eruptions, were rapidly transported, by primary and secondary mechanisms, to a shallow littoral to deep water subaqueous fan developed upon the subjacent mafic metavolcanic platform. Deposition resulted from traction, traction carpet, and suspension sedimentation from laminar to turbulent flows. Facies mapping revealed proximal (channel to overbank) to distal facies epiclastics (greywackes, argillite) intercalated with proximal vent to medial fan facies crystal rich ash flows, debris flows, bedded tuff and shallow water to deep water lava flows. Framework and matrix support debris flows exhibit a variety of subaqueous sedimentary structures, e.g., coarse tail grading, double grading, inverse to normal grading, graded stratified pebbly horizons, erosional channels. Pelitic to psammitic AE turbidites also contain primary stru~tures, e.g., flames, load casts, dewatering pipes. Despite low to intermediate pressure greenschist to amphibolite grade metamorphism and variably penetrative deformation, relicts of pumice fragments and shards were recognized as recrystallized quartzofeldspathic pseudomorphs. The mafic to felsic metavolcanics and metasediments contain blasts of hornblende, actinolite, garnet, pistacitic epidote, staurolite, albitic plagioclase, and rarely andalusite and cordierite. The mafic metavolcanics (Adams River Bay, Black River, Kenu Lake, Lobstick Bay, Snake Bay) display _holeiitic trends with komatiitic affinities. Chemical variations are consistent with high level fractionation of olivine, plagioclase, amphibole, and later magnetite from a parental komatiite. The intermediate to felsic (64-74% Si02) metavolcanics generally exhibit calc-alkaline trends. The compositional discontinuity, defined by major and trace element diversity, can be explained by a mechanism involving two different magma sources. Application of fractionation series models are inconsistent with the observed data. The tholeiitic basalts and basaltic andesites are probably derived by low pressure fractionation of a depleted (high degree of partial melting) mantle source. The depleted (low Y, Zr) calc-alkaline metavolcanics may be produced by partial melting of a geochemically evolved source, e.g., tonalitetrondhjemite, garnet amphibolite or hydrous basalt.
Resumo:
On Mars, interior layered deposits (ILD) provide evidence that water was once stable at the surface of the planet and present in large quantities. In West Candor Chasma, the ILD and their associated landforms record the depositional history of the chasma, and the deformation of those deposits provide insight into the stresses acting on them and the chasma as a whole. The post ILD structural history of West Candor is interpreted by analyzing the spatial relationships and orientation trends of structural features within the ILD. Therecording of stresses through brittle deformation of ILDs implies that the ILD had been lithified before the stress was imposed. Based on the prominent orientation trends of deformation features, the orientation of the stress regime acting upon the ILD appears to be linked to the regime that initially created the chasma-forming faults. An additional minor stress orientation was also revealed and may be related to large structures outside west Candor Chasma. The late depositional history of Ceti Mensa is herein investigated by examining the attributes and spatial relationship between unique corrugated, linear formations (CLF). The CLFs appear to be aeolian in origin but display clear indications of brittle deformation, indicating they have been Iithified. Evidence of lithification and the mineral composition of the surrounding material support the interpretation of circulating water in the area.
Resumo:
The purpose of the present study is to understand the surface deformation associated with the Killari and Wadakkancheri earthquake and to examine if there are any evidence of occurrence of paleo-earthquakes in this region or its vicinity. The present study is an attempt to characterize active tectonic structures from two areas within penisular India: the sites of 1993 Killari (Latur) (Mb 6.3) and 1994 Wadakkancheri (M 4.3) earthquakes in the Precambrian shield. The main objectives of the study are to isolate structures related to active tectonism, constraint the style of near – surface deformation and identify previous events by interpreting the deformational features. The study indicates the existence of a NW-SE trending pre-existing fault, passing through the epicentral area of the 1993 Killari earthquake. It presents the salient features obtained during the field investigations in and around the rupture zone. Details of mapping of the scrap, trenching, and shallow drilling are discussed here. It presents the geologic and tectonic settings of the Wadakkancheri area and the local seismicity; interpretation of remote sensing data and a detailed geomorphic analysis. Quantitative geomorphic analysis around the epicenter of the Wadakkancheri earthquake indicates suitable neotectonic rejuvenation. Evaluation of remote sensing data shows distinct linear features including the presence of potentially active WNW-ESE trending fault within the Precambrian shear zone. The study concludes that the earthquakes in the shield area are mostly associated with discrete faults that are developed in association with the preexisting shear zones or structurally weak zones