532 resultados para Lysosomal proteinases
Prospeção de inibidores de serinoproteinases em folhas de leguminosas arbóreas da floresta Amazônica
Resumo:
Os inibidores de proteinases são proteínas extensivamente investigadas nos tecidos de estocagem, mas pouco prospectadas em outros tecidos vegetais. O objetivo deste estudo foi detectar a presença de inibidores de serinoproteinases em extratos foliares de quinze espécies de leguminosas arbóreas da Amazônia. As espécies estudadas foram: Caesalpinia echinata, C. ferrea, Cedrelinga cateniformis, Copaifera multijuga, Dinizia excelsa, Enterolobium contortisiliquum, E. maximum, E. schomburgkii, Leucaena leucocephala, Ormosia paraensis, Parkia multijuga, P. pendula, P. platycephala, Swartzia corrugata e S. polyphylla. Folhas foram coletadas, secas a 30ºC durante 48 h, trituradas e submetidas à extração com NaCl (0,15 M, 10% p/v) resultando no extrato total. Ensaios foram executados para determinar a concentração de proteínas e detectar a atividade inibitória contra a tripsina e quimotripsina bovina. Os teores de proteínas bruta e solúvel nos extratos foliares variaram de 7,9 a 31,2% e 1,3 a 14,8%, respectivamente. A atividade inibitória sobre a tripsina e quimotripsina foi observada em todos os extratos foliares. Contudo, nos extratos de E. maximum, L. leucocephala, P. pendula, S. corrugata e S. polyphylla a inibição foi maior sobre a tripsina, enquanto o extrato de P. multijuga foi mais efetivo contra a quimotripsina. Nós concluímos que nos extratos foliares de leguminosas arbóreas têm inibidores de serinoproteinases e exibem potencial aplicações biotecnológicas.
Resumo:
Insoluble and fibrillar forms of a-synuclein are the major components of Lewy bodies, a hallmark of several sporadic and inherited neurodegenerative diseases known as synucleinopathies. a-Synuclein is a natural unfolded and aggregation-prone protein that can be degraded by the ubiquitin-proteasomal system and the lysosomal degradation pathways. a-Synuclein is a target of the main cellular proteolytic systems, but it is also able to alter their function further, contributing to the progression of neurodegeneration. Aging, a major risk for synucleinopathies, is associated with a decrease activity of the proteolytic systems, further aggravating this toxic looping cycle. Here, the current literature on the basic aspects of the routes for a-synuclein clearance, as well as the consequences of the proteolytic systems collapse, will be discussed. Finally, particular focus will be given to the sirtuins's role on proteostasis regulation, since their modulation emerged as a promising therapeutic strategy to rescue cells from a-synuclein toxicity. The controversial reports on the potential role of sirtuins in the degradation of a-synuclein will be discussed. Connection between sirtuins and proteolytic systems is definitely worth of further studies to increase the knowledge that will allow its proper exploration as new avenue to fight synucleinopathies.
Resumo:
Dissertação de mestrado em Biofísica e Bionanossistemas
Resumo:
Acetate is a short-chain fatty acid secreted by Propionibacteria from the human intestine, known to induce mitochondrial apoptotic death in colorectal cancer (CRC) cells. We previously established that acetate also induces lysosome membrane permeabilization in CRC cells, associated with release of the lysosomal protease cathepsin D (CatD), which has a well-established role in the mitochondrial apoptotic cascade. Unexpectedly, we showed that CatD has an antiapoptotic role in this process, as pepstatin A (a CatD inhibitor) increased acetate-induced apoptosis. These results mimicked our previous data in the yeast system showing that acetic acid activates a mitochondria-dependent apoptosis process associated with vacuolar membrane permeabilization and release of the vacuolar protease Pep4p, ortholog of mammalian CatD. Indeed, this protease was required for cell survival in a manner dependent on its catalytic activity and for efficient mitochondrial degradation independently of autophagy. In this study, we therefore assessed the role of CatD in acetate-induced mitochondrial alterations. We found that, similar to acetic acid in yeast, acetate-induced apoptosis is not associated with autophagy induction in CRC cells. Moreover, inhibition of CatD with small interfering RNA or pepstatin A enhanced apoptosis associated with higher mitochondrial dysfunction and increased mitochondrial mass. This effect seems to be specific, as inhibition of CatB and CatL with E-64d had no effect, nor were these proteases significantly released to the cytosol during acetate-induced apoptosis. Using yeast cells, we further show that the role of Pep4p in mitochondrial degradation depends on its protease activity and is complemented by CatD, indicating that this mechanism is conserved. In summary, the clues provided by the yeast model unveiled a novel CatD function in the degradation of damaged mitochondria when autophagy is impaired, which protects CRC cells from acetate-induced apoptosis. CatD inhibitors could therefore enhance acetate-mediated cancer cell death, presenting a novel strategy for prevention or therapy of CRC.
Candida tropicalis biofilms: biomass, metabolic activity and secreted aspartyl proteinase production
Resumo:
According to epidemiological data, Candida tropicalis has been related to urinary tract infections and haematological malignancy. Several virulence factors seem to be responsible for C. tropicalis infections, for example: their ability to adhere and to form biofilms onto different indwelling medical devices; their capacity to adhere, invade and damage host human tissues due to enzymes production such as proteinases. The main aim of this work was to study the behaviour of C. tropicalis biofilms of different ages (24120 h) formed in artificial urine (AU) and their ability to express aspartyl proteinase (SAPT) genes. The reference strain C. tropicalis ATCC 750 and two C. tropicalis isolates from urine were used. Biofilms were evaluated in terms of culturable cells by colony-forming units enumeration; total biofilm biomass was evaluated using the crystal violet staining method; metabolic activity was evaluated by XTT assay; and SAPT gene expression was determined by real-time PCR. All strains of C. tropicalis were able to form biofilms in AU, although with differences between strains. Candida tropicalis biofilms showed a decrease in terms of the number of culturable cells from 48 to 72 h. Generally, SAPT3 was highly expressed. C. tropicalis strains assayed were able to form biofilms in the presence of AU although in a strain- and time-dependent way, and SAPT genes are expressed during C. tropicalis biofilm formation.
Resumo:
AbstractBackground:Fabry disease is a lysosomal storage disease caused by enzyme α-galactosidase A deficiency as a result of mutations in the GLA gene. Cardiac involvement is characterized by progressive left ventricular hypertrophy.Objective:To estimate the prevalence of Fabry disease in a population with left ventricular hypertrophy.Methods:The patients were assessed for the presence of left ventricular hypertrophy defined as a left ventricular mass index ≥ 96 g/m2 for women or ≥ 116 g/m2 for men. Severe aortic stenosis and arterial hypertension with mild left ventricular hypertrophy were exclusion criteria. All patients included were assessed for enzyme α-galactosidase A activity using dry spot testing. Genetic study was performed whenever the enzyme activity was decreased.Results:A total of 47 patients with a mean left ventricular mass index of 141.1 g/m2 (± 28.5; 99.2 to 228.5 g/m2] were included. Most of the patients were females (51.1%). Nine (19.1%) showed decreased α-galactosidase A activity, but only one positive genetic test − [GLA] c.785G>T; p.W262L (exon 5), a mutation not previously described in the literature. This clinical investigation was able to establish the association between the mutation and the clinical presentation.Conclusion:In a population of patients with left ventricular hypertrophy, we documented a Fabry disease prevalence of 2.1%. This novel case was defined in the sequence of a mutation of unknown meaning in the GLA gene with further pathogenicity study. Thus, this study permitted the definition of a novel causal mutation for Fabry disease - [GLA] c.785G>T; p.W262L (exon 5).
Resumo:
Cellular inhibitor of apoptosis (cIAP) proteins, cIAP1 and cIAP2, are important regulators of tumor necrosis factor (TNF) superfamily (SF) signaling and are amplified in a number of tumor types. They are targeted by IAP antagonist compounds that are undergoing clinical trials. IAP antagonist compounds trigger cIAP autoubiquitylation and degradation. The TNFSF member TWEAK induces lysosomal degradation of TRAF2 and cIAPs, leading to elevated NIK levels and activation of non-canonical NF-kappaB. To investigate the role of the ubiquitin ligase RING domain of cIAP1 in these pathways, we used cIAP-deleted cells reconstituted with cIAP1 point mutants designed to interfere with the ability of the RING to dimerize or to interact with E2 enzymes. We show that RING dimerization and E2 binding are required for IAP antagonists to induce cIAP1 degradation and protect cells from TNF-induced cell death. The RING functions of cIAP1 are required for full TNF-induced activation of NF-kappaB, however, delayed activation of NF-kappaB still occurs in cIAP1 and -2 double knock-out cells. The RING functions of cIAP1 are also required to prevent constitutive activation of non-canonical NF-kappaB by targeting NIK for proteasomal degradation. However, in cIAP double knock-out cells TWEAK was still able to increase NIK levels demonstrating that NIK can be regulated by cIAP-independent pathways. Finally we show that, unlike IAP antagonists, TWEAK was able to induce degradation of cIAP1 RING mutants. These results emphasize the critical importance of the RING of cIAP1 in many signaling scenarios, but also demonstrate that in some pathways RING functions are not required.
Resumo:
Ultrastructural and cytochemical studies of peroxidase and acid phosphatase were performed in skin, lymph node and heart muscle tissue of thesus monkeys with experimental Chagas's disease. At the site of inoculation ther was a proliferative reaction with the presence of immature macrophages revealed by peroxidase technique. At the lymph node a difuse inflammatory exudate with mononuclear cells, fibroblasts and immature activated macrophages reproduces the human patrtern of acute Chagas' disease inflamatory lesions. The hearth muscle cells present different degrees of degenerative alterations and a striking increase in the number of lysosomal profiles that exhibit acid hydrolase reaction product. A strong inflammatory reaction was present due to lymphocytic infiltrate or due to eosinophil granulocytes associated to ruptured cells. The present study provides some experimental evidences that the monkey model could be used as a reliable model to characterize histopathological alterations of the human disease.
Resumo:
Macrophages and muscle cells are the main targets for invasion of Trypanosoma cruzi. Ultrastructural studies of this phenomenon in vitro showed that invasion occurs by endocytosis, with attachment and internalization being mediated by different components capable of recognizing epi-or trypomastigotes (TRY). A parasitophorus vacuole was formed in both cell types, thereafter fusing with lysosomes. Then, the mechanism of T. cruzi invasion of host cells (HC) is essentially similar (during a primary infection in the abscence of a specific immune response), regardless of wether the target cell is a professional or a non-professional phagocytic cell. Using sugars, lectins, glycosidases, proteinases and proteinase inhibitors, we observed that the relative balance between exposed sialic acid and galactose/N-acetyl galactosamine (GAL) residues on the TRY surface, determines the parasite's capacity to invade HC, and that lectin-mediated phagocytosis with GAL specificity is important for internalization of T. cruzi into macrophages. On the other hand, GAL on the surface to heart muscle cells participate on TRY adhesion. TRY need to process proteolytically both the HC and their own surface, to expose the necessary ligands and receptors that allow binding to, and internalization in the host cell. The diverse range of molecular mechanisms which the parasite could use to invade the host cell may correspond to differences in the available "receptors"on the surface of each specific cell type. Acute phase components, with lectin or proteinase inhibitory activities (a-macroglobulins), may also be involved in T. cruzi-host cell interaction.
Resumo:
Aquest treball es basa en l’estudi de dues malalties lisosòmiques: la malaltia de Niemann-Pick A/B (NPAB) i la malaltia de Niemann-Pick tipus C (NPC). En relació a la malaltia de NPAB, s’ha realitzat l’expressió in vitro d’algunes de les mutacions de canvi d’aminoàcid trobades en pacients espanyols per tal de detectar les activitats enzimàtiques residuals. Totes les mutacions presenten una activitat molt baixa, gairebé nul•la, excepte la p.L225P i la R608del que tenen un 11% i 20% d’activitat respectivament. Els resultats obtinguts són coherents amb la severitat del fenotip que presenten els pacients. D’altra banda, s’ha caracteritzat un al•lel amb una mutació que afecta a una posició poc conservada d’un donador de splicing i que produeix la generació de trànscrits aberrants corresponents a trànscrits minoritaris de SMPD1, prèviament descrits, que no codifiquen per proteïna funcional. Respecte a malaltia de NPC, s’ha realitzat una anàlisi molecular de pacients espanyols prèviament estudiats identificant, en la majoria dels casos, la segona mutació responsable de la patologia. S’ha descrit per primer cop per aquesta malaltia una gran deleció que inclou el gen NPC1 i altres gens flanquejants i s’ha estudiat l’efecte que tenen les mutacions de splicing trobades a nivell de RNA. Per una d’aquestes mutacions, c.1554-1009G&A, s’ha assajat amb èxit una estratègia terapèutica basada en la utilització d’oligonuclèotids antisentit. D’altra banda, s’està desenvolupant un model cel•lular neuronal de la malaltia de Niemann-Pick tipus C, basat en la utilització de RNAs d’interferència, sobre el qual es podran assajar possibles estratègies terapèutiques en un futur.
Resumo:
SUMMARY : Skin wound repair is a complex and highly coordinated process, where a variety of cell types unite to regenerate the damaged tissue. Several works have elucidated cellular and molecular mechanisms, in which mesenchymal-epidermal interactions play an essential role for the regulation of skin homeostasis and repair. Peroxisome Proliferator-Activated Receptors (PPARs) are ligand-activated transcription factors that belong to the nuclear receptor superfamily. Three related isotypes (PPARα, PPARß/δ and PPARγ) have been found, which exhibit distinct tissue distribution and specific physiological functions. PPARß/δ was identified as a crucial player of skin homeostasis. In the mouse skin, PPARß/δ has been described to control proliferation-differentiation state, adhesion and migration, and survival of the keratinocytes during healing. PPARß/δ has been implicated as well in the development of the hair follicles, in which mesenchymal-secreted hepatocyte growth factor (HGF) is involved. These data suggest that the biological activity of PPARß/δ is modulated by mesenchymal-epidermal interactions and that, in turn, PPARß/δ also modulates some of these signals. The aim of the present work was to elucidate the nature of the signals exchanged between the epidermis and dermis compartments, and more particularly those which are under the control of PPARß/δ. In the first part of the study, we showed that PPARß/8 in dermal fibroblasts down-regulates the mitotic activity of keratinocytes by inhibiting the IL-1 signalling pathway via the production of secreted IL-1 receptor antagonist (sIL-1Ra), a natural antagonist of this signalling. The regulation of IL-1 signalling by PPARß/δ is required for anon-pathological skin wound repair. These findings provide evidence for a novel homeostatic control of keratinocyte proliferation and differentiation mediated by the regulation of IL-1 signalling via dermal PPARß/δ fibroblasts. Proteolysis of the extracellular matrix (ECM) is a key process involved in wound repair and modifications in its activity are often associated with an alteration óf the wound closure. This process implies specific proteinases, as matrix metalloproteinases (MMPs), which are finely modulated by IL-1 signalling. In line with the first results, the second part of the work showed that MMP8 and MMP13, which are two important collagenases involved in mouse skin wound repair, are regulated by PPARß/δ. Their expression is indirectly down-regulated by dermal PPARß/δ, via the production of sIL-1Ra, resulting in the inhibition of IL-1 signalling, known to regulate the expression of numerous MMPs. We suggest that, in absence of PPARß/δ, the positive regulation of these two collagenases could participate to the delay of skin wound healing, which has been observed in mice deleted for PPARßlS. The potential therapeutic role of PPARß/b could be as well extending to inflammatory and hyperproliferative skin diseases involving IL-1 signalling, such as psoriasis or skin cancers. Quite interestingly, MMP1 (analogue of mouse MMP13) plays an essential role in human photoaging, suggesting that PPARß/δ could as well be an attractive target for photoprotection. RESUME : La cicatrisation est un processus complexe et extrêmement organisé, impliquant un grand nombre de cellules qui s'unissent pour régénérer le tissu endommagé. De nombreux travaux nous ont éclairés sur les mécanismes cellulaires et moléculaires, dans lesquels les interactions épidermo-mésenchymateuses détiennent un rôle capital à la fois dans la régulation de l'homéostasie et dans la réparation de la peau. PPAR (Peroxisome proliferatar-activated receptor), qui appartient à la superfamille des récepteurs nucléaires, se définit comme un facteur de transcription activé par des ligands très spécifiques. Trois isotypes (PPARa, PPARß/δ et PPARy) ont été décrits et sont caractérisés par une distribution tissulaire et des fonctions physiologiques clairement définies. PPARß/δ a été identifié comme étant un important acteur dans l'homéostasie de la peau. Chez la souris, il a été décrit comme contrôlant l'état de prolifération et de différenciation, le processus d'adhésion et de migration, ainsi que la survie des kératinocytes au cours de la cicatrisation. PPARßIS a également été défini comme contrôlant le développement des follicules pileux, impliquant la sécrétion par le mésenchyme du facteur de croissance HGF. Ces données suggèrent que l'activité biologique de PPARß/δ est modulée par des interactions épidermo-mésenchymateuses, et qu'en retour, il possède la capacité de moduler certains de ces signaux. L`objectif de ce travail a été d'élucider la nature des signaux échangés entre les compartiments épidermique et dermique, et plus particulièrement ceux qui sont sous le contrôle de PPARß/δ. Dans la première partie de l'étude, nous avons montré que les fibroblastes exprimant PPARß/δ réduisent l'activité mitotique des kératinocytes en inhibant la voie de signalisation IL-1, via la production de sIL-1Ra (secreted IL-1 receptor antagonist), défini comme un antagoniste naturel de cette voie de signalisation. La régulation de cette dernière par PPARß/δ est donc nécessaire pour une cicatrisation de type non pathologique. Ces résultats offrent donc une nouvelle preuve du contrôle de l'homéostasie et de l'état de prolifération/différenciation des kératinocytes par les fibroblastes exprimant PPARß/δ, en régulant la voie de signalisation IL-1. Le mécanisme de dégradation de la matrice extracellulaire (MEC) est une étape essentielle lors du processus de cicatrisation. Ainsi des modifications de cette activité protéolytïque sont souvent associées à une altération de la fermeture de la plaie. Ce processus implique des protéinases, comme les MMPs, qui sont finement modulés par la voie de signalisation IL-1. En accord avec les premiers résultats, la seconde partie des nos travaux a montré que les collagénases MMP8 et MMP13, connues pour être d'importantes molécules impliquées lors de la réparation tissulaire chez la souris, sont modulées par l'activité de PPARß/δ. Leurs expressions sont indirectement régulées par PPARß/δ, via la production. de sIL-1 Ra, entraînant ainsi l'inhibition de la voie de signalisation IL-1, décrite pour réguler l'expression de nombreuses MMPs, Nous suggérons donc qu'en absence de PPARß/δ, la régulation de ces deux collagénases pourrait être impliquée dans le retard de cicatrisation, observé chez les souris déficientes pour PPARß/δ. L'activité biologique de PPARß/δ pourrait être ainsi étendue à des maladies hyperproliferatives et inflammatoires de la peau, impliquant la voie de signalisation IL-1, comme le psoriasis ou certains cancers de la peau, et ce à des fins thérapeutiques. Il est aussi intéressant de relever que chez l'homme, MMP1 (présenté comme l'analogue de MMP13 de la souris} joue un rôle primordial dans le photo-vieillissement, nous suggérons donc que PPARß/δ pourrait ainsi être une cible attrayante concernant la photoprotection.
Resumo:
The multiplicity of cell death mechanisms induced by neonatal hypoxia-ischemia makes neuroprotective treatment against neonatal asphyxia more difficult to achieve. Whereas the roles of apoptosis and necrosis in such conditions have been studied intensively, the implication of autophagic cell death has only recently been considered. Here, we used the most clinically relevant rodent model of perinatal asphyxia to investigate the involvement of autophagy in hypoxic-ischemic brain injury. Seven-day-old rats underwent permanent ligation of the right common carotid artery, followed by 2 hours of hypoxia. This condition not only increased autophagosomal abundance (increase in microtubule-associated protein 1 light chain 3-11 level and punctuate labeling) but also lysosomal activities (cathepsin D, acid phosphatase, and beta-N-acetylhexosaminidase) in cortical and hippocampal CA3-damaged neurons at 6 and 24 hours, demonstrating an increase in the autophagic flux. In the cortex, this enhanced autophagy may be related to apoptosis since some neurons presenting a high level of autophagy also expressed apoptotic features, including cleaved caspase-3. On the other hand, enhanced autophagy in CA3 was associated with a more purely autophagic cell death phenotype. In striking contrast to CA3 neurons, those in CA1 presented only a minimal increase in autophagy but strong apoptotic characteristics. These results suggest a role of enhanced autophagy in delayed neuronal death after severe hypoxia-ischemia that is differentially linked to apoptosis according to the cerebral region.
Resumo:
Microautophagy involves direct invagination and fission of the vacuolar/lysosomal membrane under nutrient limitation. In Saccharomyces cerevisiae microautophagic uptake of soluble cytosolic proteins occurs via an autophagic tube, a highly specialized vacuolar membrane invagination. At the tip of an autophagic tube vesicles (autophagic bodies) pinch off into thevacuolar lumen for degradation. Formation of autophagic tubes is topologically equivalent to other budding processes directed away from the cytosolic environment, e.g., the invagination of multivesicular endosomes, retroviral budding, piecemeal microautophagy of the nucleus and micropexophagy. This clearly distinguishes microautophagy from other membrane fission events following budding toward the cytosol. Such processes are implicated in transport between organelles like the plasma membrane, the endoplasmic reticulum (ER), and the Golgi. Over many years microautophagy only could be characterized microscopically. Recent studies provided the possibility to study the process in vitro and have identified the first molecules that are involved in microautophagy.
Resumo:
Ontogenetic changes in digestive capabilities were analyzed in larvae and first juveniles of the spider crab Maja brachydactyla. Activities of five proteinases (total proteases, trypsin, chymotrypsin, pepsin-like and aminopeptidase), three carbohydrases (amylase, maltase and chitinase), an esterase and an alkaline phosphatase were studied to evaluate digestive enzyme profiles of the species. Both quantitative (spectrophotometry and fluorometry) and qualitative (SDS-PAGE) approaches were used. All assayed enzymes were active from hatching (zoea I-ZI) throughout larval development and in first juveniles. Significant variations during ontogeny were found only in total activities likely as a consequence of digestive system development. Specific activity varied little over ontogeny, being significant only for chitinase. Total proteases, trypsin and pepsin-like activities showed a similar pattern of increase as larval ontogeny advanced, decreasing significantly in juveniles. Chymotrypsin continued to increase, showing maximum activity after metamorphosis. Proteinase zymograms confirmed strong proteolytic activity in first zoeas, with increasing bands over the course of ontogeny, decreasing after metamorphosis. A group of bands with high molecular mass was specific to larval stages. Amylase and maltase showed a parallel pattern of continuous increase of total activity as development advanced. Gel-SDS-PAGE showed unchanged patterns of amylase activity in first zoeas of different ages and the most complex set of bands during larval ontogeny in second zoea. Esterase total activity increased significantly as ZI's aged likely reflecting introduction of a lipid-enriched diet. The importance of lipid accumulation at the beginning of ontogeny was also confirmed by the protease/esterase and amylase/esterase activity ratios, which decreased from hatch to late ZI and might be explained as an adaptation, ensuring the next molt. The results suggest that larvae of M. brachydactyla are capable of digesting a variety of dietary substrates as soon as they hatch.