909 resultados para Low-carbon process
Resumo:
Low metal content Co and Ni alumina supported catalysts (4.0, 2.5 and 1.0 wt% nominal metal content) have been prepared, characterized (by ICP-OES, TEM, TPR-H2 and TPO) and tested for the CO2 reforming of methane. The objective is to optimize the metal loading in order to have a more efficient system. The selected reaction temperature is 973 K, although some tests at higher reaction temperature have been also performed. The results show that the amount of deposited carbon is noticeably lower than that obtained with the Co and Ni reference catalysts (9 wt%), but the CH4 and CO2 conversions are also lower. Among the catalysts tested, the Co(1) catalyst (the value in brackets corresponds to the nominal wt% loading) is deactivated during the first minutes of reaction because CoAl2O4 is formed, while Ni(1) and Co(2.5) catalysts show a high specific activity for methane conversion, a high stability and a very low carbon deposition.
Resumo:
The principal aim of this work was to determine the role of non-metallic inclusions in the process of hydrogen stepwise cracking (SWC). Additionally, the influence of inclusions upon the notch ductility of hydrogen charged (HC) and uncharged (UN) tensile specimens was examined. To obtain a basis for experiment a series of low carbon-manganese steels were prepared by induction melting. In order to produce variations in the composition, morphology, volume fraction, size and distribution of the inclusions the steel chemistry was adjusted prior to casting by additions of deoxidiser and Ca-Si injection. Sections of each ingot were hot rolled. Metallography, image analysis, mechanical tests and hydrogen SWC tests were then carried out. The volume fraction, morphology, and shape of inclusions influenced the tensile ductility of the steels. Marked anisotropy was found in the steels containing type II MnS inclusions at all rolling temperatures, whereas the fully Ca treated steel was isotropic. It was found that several inclusion parameters (projected length PL, mean free distance MFD, nearest-neighbour distance NND) correlated with fracture strain. An increase in inclusion volume fraction and/or the dimension of inclusions on a plane parallel to the plane of fracture led to a decrease in fracture strain. The inclusion parameters did not correlate with the fracture strains for the HC tensile specimens. However, large or clusters of inclusions acted as the principal sites for crack initiation. `Fisheyes' or areas of `flat' fracture were often found on these fracture surfaces. The criteria for SWC initiation was found to be either large inclusions or clusters of inclusions. As the PL of inclusions increased the probability of large SWCs occurring increased. SWC initiation at inclusions was believed to occur at a critical concentration of hydrogen. Factors which assisted the concentration of hydrogen at inclusions were discussed. None of the proposed mechanisms of hydrogen embrittlement could be identified as the single cause of SWC.
Resumo:
Biomass-To-Liquid (BTL) is one of the most promising low carbon processes available to support the expanding transportation sector. This multi-step process produces hydrocarbon fuels from biomass, the so-called “second generation biofuels” that, unlike first generation biofuels, have the ability to make use of a wider range of biomass feedstock than just plant oils and sugar/starch components. A BTL process based on gasification has yet to be commercialized. This work focuses on the techno-economic feasibility of nine BTL plants. The scope was limited to hydrocarbon products as these can be readily incorporated and integrated into conventional markets and supply chains. The evaluated BTL systems were based on pressurised oxygen gasification of wood biomass or bio-oil and they were characterised by different fuel synthesis processes including: Fischer-Tropsch synthesis, the Methanol to Gasoline (MTG) process and the Topsoe Integrated Gasoline (TIGAS) synthesis. This was the first time that these three fuel synthesis technologies were compared in a single, consistent evaluation. The selected process concepts were modelled using the process simulation software IPSEpro to determine mass balances, energy balances and product distributions. For each BTL concept, a cost model was developed in MS Excel to estimate capital, operating and production costs. An uncertainty analysis based on the Monte Carlo statistical method, was also carried out to examine how the uncertainty in the input parameters of the cost model could affect the output (i.e. production cost) of the model. This was the first time that an uncertainty analysis was included in a published techno-economic assessment study of BTL systems. It was found that bio-oil gasification cannot currently compete with solid biomass gasification due to the lower efficiencies and higher costs associated with the additional thermal conversion step of fast pyrolysis. Fischer-Tropsch synthesis was the most promising fuel synthesis technology for commercial production of liquid hydrocarbon fuels since it achieved higher efficiencies and lower costs than TIGAS and MTG. None of the BTL systems were competitive with conventional fossil fuel plants. However, if government tax take was reduced by approximately 33% or a subsidy of £55/t dry biomass was available, transport biofuels could be competitive with conventional fuels. Large scale biofuel production may be possible in the long term through subsidies, fuels price rises and legislation.
Resumo:
Though the principle of the solar Rankine cycle is well known, with several examples reported in the literature, there is yet a scarcity of engines that could be efficiently applied in small-scale (<100 KW) applications. Hence, this paper presents a variant of the engine that uses an isothermal expansion to achieve a theoretical efficiency close to the Carnot limit. Generation of steam inside the power cylinder obviates the need for an external boiler. The device is suitable for slow-moving applications and is of particular interest for driving a batch-desalination process. Preliminary experiments have shown cycle efficiency of 16%, and a high work ratio of 0.997. ©The Author 2013. Published by Oxford University Press. All rights reserved.
Resumo:
This chapter discusses network protection of high-voltage direct current (HVDC) transmission systems for large-scale offshore wind farms where the HVDC system utilizes voltage-source converters. The multi-terminal HVDC network topology and protection allocation and configuration are discussed with DC circuit breaker and protection relay configurations studied for different fault conditions. A detailed protection scheme is designed with a solution that does not require relay communication. Advanced understanding of protection system design and operation is necessary for reliable and safe operation of the meshed HVDC system under fault conditions. Meshed-HVDC systems are important as they will be used to interconnect large-scale offshore wind generation projects. Offshore wind generation is growing rapidly and offers a means of securing energy supply and addressing emissions targets whilst minimising community impacts. There are ambitious plans concerning such projects in Europe and in the Asia-Pacific region which will all require a reliable yet economic system to generate, collect, and transmit electrical power from renewable resources. Collective offshore wind farms are efficient and have potential as a significant low-carbon energy source. However, this requires a reliable collection and transmission system. Offshore wind power generation is a relatively new area and lacks systematic analysis of faults and associated operational experience to enhance further development. Appropriate fault protection schemes are required and this chapter highlights the process of developing and assessing such schemes. The chapter illustrates the basic meshed topology, identifies the need for distance evaluation, and appropriate cable models, then details the design and operation of the protection scheme with simulation results used to illustrate operation. © Springer Science+Business Media Singapore 2014.
Resumo:
Local air quality was one of the main stimulants for low carbon vehicle development during the 1990s. Issues of national fuel security and global air quality (climate change) have added pressure for their development, stimulating schemes to facilitate their deployment in the UK. In this case study, Coventry City Council aimed to adopt an in-house fleet of electric and hybrid-electric vehicles to replace business mileage paid for in employee's private vehicles. This study made comparisons between the proposed vehicle technologies, in terms of costs and air quality, over projected scenarios of typical use. The study found that under 2009 conditions, the electric and hybrid fleet could not compete on cost with the current business model because of untested assumptions, but certain emissions were significantly reduced >50%. Climate change gas emissions were most drastically reduced where electric vehicles were adopted because the electricity supply was generated by renewable energy sources. The study identified the key cost barriers and benefits to adoption of low-emission vehicles in current conditions in the Coventry fleet. Low-emission vehicles achieved significant air pollution-associated health cost and atmospheric emission reductions per vehicle, and widespread adoption in cities could deliver significant change. © The Author 2011. Published by Oxford University Press. All rights reserved.
Resumo:
Carbon capture and storage (CCS) can contribute significantly to addressing the global greenhouse gas (GHG) emissions problem. Despite widespread political support, CCS remains unknown to the general public. Public perception researchers have found that, when asked, the public is relatively unfamiliar with CCS yet many individuals voice specific safety concerns regarding the technology. We believe this leads many stakeholders conflate CCS with the better-known and more visible technology hydraulic fracturing (fracking). We support this with content analysis of media coverage, web analytics, and public lobbying records. Furthermore, we present results from a survey of United States residents. This first-of-its-kind survey assessed participants’ knowledge, opinions and support of CCS and fracking technologies. The survey showed that participants had more knowledge of fracking than CCS, and that knowledge of fracking made participants less willing to support CCS projects. Additionally, it showed that participants viewed the two technologies as having similar risks and similar risk intensities. In the CCS stakeholder literature, judgment and decision-making (JDM) frameworks are noticeably absent, and public perception is not discussed using any cognitive biases as a way of understanding or explaining irrational decisions, yet these survey results show evidence of both anchoring bias and the ambiguity effect. Public acceptance of CCS is essential for a national low-carbon future plan. In conclusion, we propose changes in communications and incentives as programs to increase support of CCS.
Resumo:
In 2015 Ireland has arguably begun to make its first bold steps in confronting the challenges of energy transition, with the objective of a “low carbon, climate resilient and environmentally sustainable economy by the end of the year 2050” expressed in the 2015 Climate Action and Low Carbon Development Bill and the 2015 Energy Bill acknowledging that energy transformation relied on a new breed of ‘energy citizens’. These represent the first formal articulation of Ireland’s ambition to engage in a radical, long-term and far-reaching transition process, and raises a myriad of questions over how this can be operationalised, resourced and whether it can maintain political momentum. A range of perspectives on these issues is provided in the growing body of literature on transition theories (Rotmans et al 2001, Markard et al 2012) and the inter-disciplinary EPA-funded CC Transitions project, based at Queen’s University Belfast, represents an attempt to translate this into the context of Ireland’s institutions and technological profile. By relating this to international research on sustainability transitions, which conceptualises transitions as multi-level, multi-phase and multi-actor processes, this paper will explore the opportunities of alternative pathways that could take Ireland towards a more progressing, inclusive and effective low carbon future. Drawing on a number of case studies it will highlight some of the capacities for transition required in Irish society: where these exist, how they are being built or enabled, and the barriers to wider social change.
Resumo:
The construction industry is responsible for 40% of European Union (EU) end-use emissions but addressing this is problematic, as evident from the performance gap between design intention and on-site energy performance. There is a lack of the expertise needed for low energy construction (LEC) in the UK as the complex work processes involved require ‘energy literacy’ of all construction occupations, high qualification levels, broad occupational profiles, integrated teamworking, and good communication . This research identifies the obstacles to meeting these requirements, the nature of the expertise needed to break down occupational divisions and bridge those interfaces where the main heat losses occur, and the transition pathway implied. Obstacles include a decline in the level, breadth and quality of construction vocational education and training (VET), the lack of a learning infrastructure on sites, and a fragmented employment structure. To overcome these and develop enhanced understanding of LEC requires a transformation of the existing structure of VET provision and construction employment and a new curriculum based on a broader concept of agency and backed by rigorous enforcement of standards. This can be achieved through a radical transition pathway rather than market-based solutions to a low carbon future for the construction sector.
Resumo:
Tutkimuksessa selvitetään uusiutuvien energiateknologioiden soveltumista valmistavan teknologiateollisuuden toimintaan ja teollisuuspuistossa toimimisen tuottamia mahdollisia etuja yritysten energiankäytön osalta. Toimimalla teollisuuspuistossa yritykset voivat hyötyä alueen vahvasta infrastruktuurista ja vastata tulevaisuuden kiristyviin tehokkuus- tai vähähiilisyysvaatimuksiin. Teollisuuspuistot mahdollistavat teollisten symbioosien syntymisen sekä energianhankinnan ja -käytön huomattavat mittakaavahyödyt. Useissa teknologiayrityksissä energian kustannukset ovat olleet vähällä huomiolla, sillä ne eivät ole yritysten ydinliiketoimintaa tai vaikuta merkittävästi tuotantoprosessiin. Oikein mitoitettuna paikalliset energian tuotantotavat ja energiatehokkuustoimet voivat olla kannattavia investointeja jo tänään. Tulevaisuudessa teollisuuspuistot voivat osoittautua kiinnostaviksi sijaintikohteiksi energiavarastoille. Tuloksissa esitetään näkemys erilaisten paikallisten uusiutuvien energiantuotantomuotojen ja synteettisten polttoaineiden tuotannon soveltumisesta valmistavan teollisuuden keskittymään. Teollisuuspuiston yritykset voivat hyödyntää monia synteettisten polttoaineiden tuotannon sivuvirtoja vähentäen samalla nykyisiä kustannuksia sekä päästöjä. Uuden teollisuuspuiston ratkaisuja suunniteltaessa tulee ottaa huomioon tulevaisuuden vaatimukset ja uudenlaisten ratkaisujen kuten teollisuuden ylijäämälämpöjen hyödyntämisen mahdollisuudet.
Resumo:
This article examines discourses associated with a new environmental movement, “Carbon Rationing Action Groups” (CRAGs). This case study is intended to contribute to a wider investigation of the emergence of a new type of language used to debate climate change mitigation. Advice on how to reduce one's “carbon footprint,” for example, is provided almost daily. Much of this advice is framed by the use of metaphors and “carbon compounds”—lexical combinations of at least two roots—such as “carbon finance” or “low carbon diet.” The study uses a combination of tools from frame analysis and lexical pragmatics within the general framework of ecolinguistics to compare and contrast language use on the CRAGs' website with press coverage reporting on them. The analysis shows how the use of such lexical carbon compounds enables and facilitates different types of metaphorical frames such as dieting, finance and tax paying, war time rationing, and religious imperatives in the two corpora.
Resumo:
This work has been conducted in order to determine the solubility and diffusion coefficients of different aromatic substances in two different grades of polylactic acid (PLA), Amorphous (PDLLA) and Crystalline (PLLA); in particular the focus is on the following terpenes: Linalool, α-Pinene, β-Citronellol and L-Linalool. Moreover, further analyses have been carried out with the aim to verify if the use of neat crystalline PLA, (PLLA), a chiral substrate, may lead to an enantioenrichment of absorbed species in order to use it as membrane in enantioselective processes. The other possible applications of PLA, which has aroused interest in carry out the above-mentioned work, concerns its use in food packaging. Therefore, it is interesting and also very important, to evaluate the barrier properties of PLA, focusing in particular on the transport and absorption of terpenes, by the packaging and, hence, by the PLA. PLA films/slabs of one-millimeter thickness and with square shape, were prepared through the Injection Molding process. On the resulting PLA films heat pretreatment processes of normalizing were then performed to enhance the properties of the material. In order to evaluate solubility and diffusion coefficient of the different penetrating species, the absorption kinetics of various terpenes, in the two different types of PLA, were determined by gravimetric methods. Subsequently, the absorbed liquid was extracted with methanol (MeOH), non- solvent for PLA, and the extract analyzed by the use of High Performance Liquid Chromatography (HPLC), in order to evaluate its possible enantiomeric excess. Moreover, PLA films used were subjected to differential scanning calorimetry (DSC) which allowed to measure the glass transition temperature (Tg) and to determine the degree of crystallinity of the polymer (Xc).
Resumo:
Increasing environmental awareness has been a significant driving force for innovations and process improvements in different sectors and the field of chemistry is not an outlier. Innovating around industrial chemical processes in line with current environmental responsibilities is however no mean feat. One of such hard to overhaul process is the production of methyl methacrylate (MMA) commonly produced via the acetone cyanohydrin (ACH) process developed back in the 1930s. Different alternatives to the ACH process have emerged over the years and the Alpha Lucite process has been particularly promising with a combined plant capacity of 370,000 metric tonnes in Singapore and Saudi Arabia. This study applied Life Cycle Assessment methodology to conduct a comparative analysis between the ACH and Lucite processes with the aim of ascertaining the effect of applying principles of green chemistry as a process improvement tool on overall environmental impacts. A further comparison was made between the Lucite process and a lab-scale process that is further improvement on the former, also based on green chemistry principles. Results showed that the Lucite process has higher impacts on resource scarcity and ecosystem health whereas the ACH process has higher impacts on human health. On the other hand, compared to the Lucite process the lab-scale process has higher impacts in both the ecosystem and human health categories with lower impacts only in the resource scarcity category. It was observed that the benefits of process improvements with green chemistry principles might not be apparent in some categories due to some limitations of the methodology. Process contribution analysis was also performed and it revealed that the contribution of energy is significant, therefore a sensitivity analysis with different energy scenarios was performed. An uncertainty analysis using Monte Carlo analysis was also performed to validate the consistency of the results in each of the comparisons.
Resumo:
MnHCF was synthesized by simple co-precipitation method. In this work we investigate the electrochemical behavior of manganese hexacyanoferrate in zinc sulfate (ZnSO4), ZnSO4+MnSO4 and zinc triflate (Zn(OTF)2) aqueous electrolytes. Electrochemical tests were performed by both El-cell which is designed for reflection investigation and coin cell. In cyclic voltammetry curves, we observed redox peaks of both Fe3+/2+ and Mn3+/2+ pairs. The results based on current shows that the capacity of battery is controlled by diffusion process in aqueous electrolyte system. MnHCF undergoes severe dissolution and zinc displacement during cycling. Compared to ZnSO4, anions of Zn (OTF)2 electrolyte are strongly adsorbed on the electrolyte surface, in turn hindering the water oxidation reaction and reducing the decomposition of MnHCF. The MnHCF/Zn battery using 3M Zn (OTF)2 delivers a specific capacity of 41 mAhg-1 at 50 mAg-1 while by using 3M ZnSO4+1M MnSO4 the specific capacity reaches to 400 mAhg-1 for the pure sample and around 250 mAhg-1 for the MnHCF+A. Our results suggest that the anions in the aqueous electrolyte are of great importance to optimize the electrochemical performance of metal hexacyanoferrates. The pre-addition of MnSO4 into ZnSO4 solution is capable of easing the Mn2+ dissolution from the cathode.
Resumo:
The purpose of this work was to experimentally investigate the thermal diffusivity of four different gray cast iron alloys, regularly used to produce brake disks for automotive vehicles. Thermal diffusivity measurements were performed at temperatures ranging from room temperature to 600 A degrees C. The influence of the thermal conductivity on the thermomechanical fatigue life is also briefly presented. The measurements were sensitive to the influence of the carbon equivalent and alloying elements, such as molybdenum, copper and chromium. Molybdenum, unlike copper, lowered the thermal diffusivity of the gray cast iron, and alloy E (without molybdenum), besides presenting a relatively low carbon equivalent content and an increase in the values of the thermal diffusivity, presented the best performance during the thermomechanical fatigue. The molybdenum present in alloys B and C did not fulfill the expectations of providing the best thermomechanical fatigue behavior. Consequently, its elimination in the gray cast iron alloy for this application will result in a significant economy.