885 resultados para Low and Burbanks Grant
Resumo:
"The general purpose of this handbook is to inform our clients (internal and external) of the policies governing all grants awarded from the Illinois State Board of Education, to communicate with our clients, the procedures and guidelines, to ensure sound accounting practices and to provide consistency throughout the State Board in the administration of grants. The procedures and guidelines do not supersede the rules and regulations governing each specific program."--P. 2.
Resumo:
Title on added t.p. and running title: Alsace-Lorraine, monument to Grant.
Resumo:
This study used a novel cue exposure paradigm to investigate the differences between high- and low-risk drinkers in their desire to drink during a drinking session. Fifty-three self-selected participants were assigned to high- or low-risk drinking groups based on their self-reported consumption of alcohol, then compared on their desire to drink over a 90 min paced drinking session. High-risk drinkers showed increasing desire over the session, while low-risk drinkers' desire began to decrease after only a short drinking period. The perceived and actual effects of the alcohol did not appear to be able to account for the difference. Results are discussed with reference to issues of impaired control. Suggestions for future research directions are also offered.
Resumo:
The main aim of the work is to investigate sequential pyrolysis of willow SRC using two different heating rates (25 and 1500 °C/min) between 320 and 520 °C. Thermogravimetric analysis (TGA) and pyrolysis - gas chromatography - mass spectroscopy (Py-GC-MS) have been used for this analysis. In addition, laboratory scale processing has been undertaken to compare product distribution from fast and slow pyrolysis at 500 °C. Fast pyrolysis was carried out using a 1 kg/h continuous bubbling fluidized bed reactor, and slow pyrolysis using a 100 g batch reactor. Findings from this study show that heating rate and pyrolysis temperatures have a significant influence on the chemical content of decomposition products. From the analytical sequential pyrolysis, an inverse relationship was seen between the total yield of furfural (at high heating rates) and 2-furanmethanol (at low heating rates). The total yield of 1,2-dihydroxybenzene (catechol) was found to be significant higher at low heating rates. The intermediates of catechol, 2-methoxy-4-(2-propenyl)phenol (eugenol); 2-methoxyphenol (guaiacol); 4-Hydroxy-3,5-dimethoxybenzaldehyde (syringaldehyde) and 4-hydroxy-3-methoxybenzaldehyde (vanillin), were found to be highest at high heating rates. It was also found that laboratory scale processing alters the pyrolysis bio-oil chemical composition, and the proportions of pyrolysis product yields. The GC-MS/FID analysis of fast and slow pyrolysis bio-oils reveals significant differences. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
The performance of vacuum, slow and fast pyrolysis processes to transfer energy from the paper waste sludge (PWS) to liquid and solid products was compared. Paper waste sludges with low and high ash content (8.5 and 46.7 wt.%) were converted under optimised conditions for temperature and pellet size to maximise both product yields and energy content. Comparison of the gross energy conversions, as a combination of the bio-oil/tarry phase and char (ECsum), revealed that the fast pyrolysis performance was between 18.5% and 20.1% higher for the low ash PWS, and 18.4% and 36.5% higher for high ash PWS, when compared to the slow and vacuum pyrolysis processes respectively. For both PWSs, this finding was mainly attributed to higher production of condensable organic compounds and lower water yields during FP. The low ash PWS chars, fast pyrolysis bio-oils and vacuum pyrolysis tarry phase products had high calorific values (∼18-23 MJ kg-1) making them promising for energy applications. Considering the low calorific values of the chars from alternative pyrolysis processes (∼4-7 MJ kg-1), the high ash PWS should rather be converted to fast pyrolysis bio-oil to maximise the recovery of usable energy products.
Resumo:
Buildings and other infrastructures located in the coastal regions of the US have a higher level of wind vulnerability. Reducing the increasing property losses and causalities associated with severe windstorms has been the central research focus of the wind engineering community. The present wind engineering toolbox consists of building codes and standards, laboratory experiments, and field measurements. The American Society of Civil Engineers (ASCE) 7 standard provides wind loads only for buildings with common shapes. For complex cases it refers to physical modeling. Although this option can be economically viable for large projects, it is not cost-effective for low-rise residential houses. To circumvent these limitations, a numerical approach based on the techniques of Computational Fluid Dynamics (CFD) has been developed. The recent advance in computing technology and significant developments in turbulence modeling is making numerical evaluation of wind effects a more affordable approach. The present study targeted those cases that are not addressed by the standards. These include wind loads on complex roofs for low-rise buildings, aerodynamics of tall buildings, and effects of complex surrounding buildings. Among all the turbulence models investigated, the large eddy simulation (LES) model performed the best in predicting wind loads. The application of a spatially evolving time-dependent wind velocity field with the relevant turbulence structures at the inlet boundaries was found to be essential. All the results were compared and validated with experimental data. The study also revealed CFD's unique flow visualization and aerodynamic data generation capabilities along with a better understanding of the complex three-dimensional aerodynamics of wind-structure interactions. With the proper modeling that realistically represents the actual turbulent atmospheric boundary layer flow, CFD can offer an economical alternative to the existing wind engineering tools. CFD's easy accessibility is expected to transform the practice of structural design for wind, resulting in more wind-resilient and sustainable systems by encouraging optimal aerodynamic and sustainable structural/building design. Thus, this method will help ensure public safety and reduce economic losses due to wind perils.
Resumo:
BACKGROUND: -There are few contemporary data on the mortality and morbidity associated with rheumatic heart disease (RHD) or information on their predictors. We report the two year follow-up of individuals with RHD from 14 low and middle income countries in Africa and Asia.
METHODS: -Between January 2010 and November 2012, we enrolled 3343 patients from 25 centers in 14 countries and followed them for two years to assess mortality, congestive heart failure (CHF), stroke or transient ischemic attack (TIA), recurrent acute rheumatic fever (ARF), and infective endocarditis (IE).
RESULTS: -Vital status at 24 months was known for 2960 (88.5%) patients. Two thirds were female. Although patients were young (median age 28 years, interquartile range 18 to 40), the two year case fatality rate was high (500 deaths, 16.9%). Mortality rate was 116.3/1000 patient-years in the first year and 65.4/1000 patient-years in the second year. Median age at death was 28.7 years. Independent predictors of death were severe valve disease (hazard ratio (HR) 2.36, 95% confidence interval (CI) 1.80-3.11), CHF (HR 2.16, 95% CI 1.70-2.72), New York Heart Association functional class III/IV (HR 1.67, 95% CI 1.32-2.10), atrial fibrillation (AF) (HR 1.40, 95% CI 1.10-1.78) and older age (HR 1.02, 95% CI 1.01-1.02 per year increase) at enrolment. Post-primary education (HR 0.67, 95% CI 0.54-0.85) and female sex (HR 0.65, 95%CI 0.52-0.80) were associated with lower risk of death. 204 (6.9%) had new CHF (incidence, 38.42/1000 patient-years), 46 (1.6%) had a stroke or TIA (8.45/1000 patient-years), 19 (0.6%) had ARF (3.49/1000 patient-years), and 20 (0.7%) had IE (3.65/1000 patient-years). Previous stroke and older age were independent predictors of stroke/TIA or systemic embolism. Patients from low and lower-middle income countries had significantly higher age- and sex-adjusted mortality compared to patients from upper-middle income countries. Valve surgery was significantly more common in upper-middle income than in lower-middle- or low-income countries.
CONCLUSIONS: -Patients with clinical RHD have high mortality and morbidity despite being young; those from low and lower-middle income countries had a poorer prognosis associated with advanced disease and low education. Programs focused on early detection and treatment of clinical RHD are required to improve outcomes.
Questionnare established for the brazilian inventory of low and intermediate level radioactive waste
Resumo:
Buildings and other infrastructures located in the coastal regions of the US have a higher level of wind vulnerability. Reducing the increasing property losses and causalities associated with severe windstorms has been the central research focus of the wind engineering community. The present wind engineering toolbox consists of building codes and standards, laboratory experiments, and field measurements. The American Society of Civil Engineers (ASCE) 7 standard provides wind loads only for buildings with common shapes. For complex cases it refers to physical modeling. Although this option can be economically viable for large projects, it is not cost-effective for low-rise residential houses. To circumvent these limitations, a numerical approach based on the techniques of Computational Fluid Dynamics (CFD) has been developed. The recent advance in computing technology and significant developments in turbulence modeling is making numerical evaluation of wind effects a more affordable approach. The present study targeted those cases that are not addressed by the standards. These include wind loads on complex roofs for low-rise buildings, aerodynamics of tall buildings, and effects of complex surrounding buildings. Among all the turbulence models investigated, the large eddy simulation (LES) model performed the best in predicting wind loads. The application of a spatially evolving time-dependent wind velocity field with the relevant turbulence structures at the inlet boundaries was found to be essential. All the results were compared and validated with experimental data. The study also revealed CFD’s unique flow visualization and aerodynamic data generation capabilities along with a better understanding of the complex three-dimensional aerodynamics of wind-structure interactions. With the proper modeling that realistically represents the actual turbulent atmospheric boundary layer flow, CFD can offer an economical alternative to the existing wind engineering tools. CFD’s easy accessibility is expected to transform the practice of structural design for wind, resulting in more wind-resilient and sustainable systems by encouraging optimal aerodynamic and sustainable structural/building design. Thus, this method will help ensure public safety and reduce economic losses due to wind perils.
Resumo:
The purpose of this study was to quantify the metabolic equivalents (METs) of resistance exercise in obese patients with type 2 diabetes (T2DM) and healthy young subjects and to evaluate whether there were differences between sessions executed at low- versus high-intensity resistance exercise. Twenty obese patients with T2DM (62.9±6.1 years) and 22 young subjects (22.6±1.9 years) performed two training sessions: one at vigorous intensity (80% of 1-repetition maximum (1RM)) and one at moderate intensity (60% of 1RM). Both groups carried out three strength exercises with a 2-day recovery between sessions. Oxygen consumption was continuously measured 15 min before, during and after each training session. Obese T2DM patients showed lower METs values compared with young healthy participants at the baseline phase (F= 2043.86; P<0.01), during training (F=1140.59; P<0.01) and in the post-exercise phase (F=1012.71; P<0.01). No effects were detected in the group x intensity analysis of covariance. In this study, at both light-moderate and vigorous resistance exercise intensities, the METs value that best represented both sessions was 3 METs for the obese elderly T2DM patients and 5 METs for young subjects.
Resumo:
The purpose of this paper is to determine the prevalence of the toxic shock toxin gene (tst) and to enumerate the circulating strains of methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) in Australian isolates collected over two decades. The aim was to subtype these strains using the binary genes pvl, cna, sdrE, pUB110 and pT181. Isolates were assayed using real-time polymerase chain reaction (PCR) for mecA, nuc, 16 S rRNA, eight single-nucleotide polymorphisms (SNPs) and for five binary genes. Two realtime PCR assays were developed for tst. The 90 MRSA isolates belonged to CC239 (39 in 1989, 38 in 1996 and ten in 2003), CC1 (two in 2003) and CC22 (one in 2003). The majority of the 210 MSSA isolates belonged to CC1 (26), CC5 (24) and CC78 (23). Only 18 isolates were tst-positive and only 15 were pvl-positive. Nine MSSA isolates belonged to five binary types of ST93, including two pvlpositive types. The proportion of tst-positive and pvl-positive isolates was low and no significant increase was demonstrated. Dominant MSSA clonal complexes were similar to those seen elsewhere, with the exception of CC78. CC239 MRSA (AUS-2/3) was the predominant MRSA but decreased significantly in prevalence, while CC22 (EMRSA-15) and CC1 (WA-1) emerged. Genetically diverse ST93 MSSA predated the emergence of ST93- MRSA (the Queensland clone).