881 resultados para Low Speed Switched Reluctance Machine
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Nell’ambito della presente tesi verrà descritto un approccio generalizzato per il controllo delle macchine elettriche trifasi; la prima parte è incentrata nello sviluppo di una metodologia di modellizzazione generale, ossia in grado di descrivere, da un punto di vista matematico, il comportamento di una generica macchina elettrica, che possa quindi includere in sé stessa tutte le caratteristiche salienti che possano caratterizzare ogni specifica tipologia di macchina elettrica. Il passo successivo è quello di realizzare un algoritmo di controllo per macchine elettriche che si poggi sulla teoria generalizzata e che utilizzi per il proprio funzionamento quelle grandezze offerte dal modello unico delle macchine elettriche. La tipologia di controllo che è stata utilizzata è quella che comunemente viene definita come controllo ad orientamento di campo (FOC), per la quale sono stati individuati degli accorgimenti atti a migliorarne le prestazioni dinamiche e di controllo della coppia erogata. Per concludere verrà presentata una serie di prove sperimentali con lo scopo di mettere in risalto alcuni aspetti cruciali nel controllo delle macchine elettriche mediante un algoritmo ad orientamento di campo e soprattutto di verificare l’attendibilità dell’approccio generalizzato alle macchine elettriche trifasi. I risultati sperimentali confermano quindi l’applicabilità del metodo a diverse tipologie di macchine (asincrone e sincrone) e sono stati verificate nelle condizioni operative più critiche: bassa velocità, alta velocità bassi carichi, dinamica lenta e dinamica veloce.
Resumo:
These investigations will discuss the operational noise caused by automotive torque converters during speed ratio operation. Two specific cases of torque converter noise will be studied; cavitation, and a monotonic turbine induced noise. Cavitation occurs at or near stall, or zero turbine speed. The bubbles produced due to the extreme torques at low speed ratio operation, upon collapse, may cause a broadband noise that is unwanted by those who are occupying the vehicle as other portions of the vehicle drive train improve acoustically. Turbine induced noise, which occurs at high engine torque at around 0.5 speed ratio, is a narrow-band phenomenon that is audible to vehicle occupants currently. The solution to the turbine induced noise is known, however this study is to gain a better understanding of the mechanics behind this occurrence. The automated torque converter dynamometer test cell was utilized in these experiments to determine the effect of torque converter design parameters on the offset of cavitation and to employ the use a microwave telemetry system to directly measure pressures and structural motion on the turbine. Nearfield acoustics were used as a detection method for all phenomena while using a standardized speed ratio sweep test. Changes in filtered sound pressure levels enabled the ability to detect cavitation desinence. This, in turn, was utilized to determine the effects of various torque converter design parameters, including diameter, torus dimensions, and pump and stator blade designs on cavitation. The on turbine pressures and motion measured with the microwave telemetry were used to understand better the effects of a notched trailing edge turbine blade on the turbine induced noise.
Resumo:
High suction loads appear on roofs of low-height buildings. The use of parapets with appropriate height at the roof edges alleviates these loads. The performance of six parapet configurations to decrease the suction loads induced on roofs by oblique winds has been studied in a low speed wind tunnel. The studied parapet configurations include vertical wall parapets, either solid or porous, and cantilevered parapets formed by a small horizontal roof close to the building roof. Low-height parapets with a medium porosity and cantilevered parapets are more efficient than solid parapets to reduce the wind suctions generated on the roofs by conical vortices.
Resumo:
This paper describes the experimental setup, procedure, and results obtained, concerning the dynamics of a body lying on a floor, attached to a hinge, and exposed to an unsteady flow, which is a model of the initiation of rotational motion of ballast stones due to the wind generated by the passing of a high-speed train. The idea is to obtain experimental data to support the theoretical model developed in Sanz-Andres and Navarro-Medina (J Wind Eng Ind Aerodyn 98, 772–783, (2010), aimed at analyzing the initial phase of the ballast train-induced-wind erosion (BATIWE) phenomenon. The experimental setup is based on an open circuit, closed test section, low-speed wind tunnel, with a new sinusoidal gust generator mechanism concept, designed and built at the IDR/UPM. The tunnel’s main characteristic is the ability to generate a flow with a uniform velocity profile and sinusoidal time fluctuation of the speed. Experimental results and theoretical model predictions are in good agreement.
Resumo:
Various micro-radial compressor configurations were investigated using one-dimensional meanline and computational fluid dynamics (CFD) techniques for use in a micro gas turbine (MGT) domestic combined heat and power (DCHP) application. Blade backsweep, shaft speed, and blade height were varied at a constant pressure ratio. Shaft speeds were limited to 220 000 r/min, to enable the use of a turbocharger bearing platform. Off-design compressor performance was established and used to determine the MGT performance envelope; this in turn was used to assess potential cost and environmental savings in a heat-led DCHP operating scenario within the target market of a detached family home. A low target-stage pressure ratio provided an opportunity to reduce diffusion within the impeller. Critically for DCHP, this produced very regular flow, which improved impeller performance for a wider operating envelope. The best performing impeller was a low-speed, 170 000 r/min, low-backsweep, 15° configuration producing 71.76 per cent stage efficiency at a pressure ratio of 2.20. This produced an MGT design point system efficiency of 14.85 per cent at 993 W, matching prime movers in the latest commercial DCHP units. Cost and CO2 savings were 10.7 per cent and 6.3 per cent, respectively, for annual power demands of 17.4 MWht and 6.1 MWhe compared to a standard condensing boiler (with grid) installation. The maximum cost saving (on design point) was 14.2 per cent for annual power demands of 22.62 MWht and 6.1 MWhe corresponding to an 8.1 per cent CO2 saving. When sizing, maximum savings were found with larger heat demands. When sized, maximum savings could be made by encouraging more electricity export either by reducing household electricity consumption or by increasing machine efficiency.
Resumo:
The concept of measurement-enabled production is based on integrating metrology systems into production processes and generated significant interest in industry, due to its potential to increase process capability and accuracy, which in turn reduces production times and eliminates defective parts. One of the most promising methods of integrating metrology into production is the usage of external metrology systems to compensate machine tool errors in real time. The development and experimental performance evaluation of a low-cost, prototype three-axis machine tool that is laser tracker assisted are described in this paper. Real-time corrections of the machine tool's absolute volumetric error have been achieved. As a result, significant increases in static repeatability and accuracy have been demonstrated, allowing the low-cost three-axis machine tool to reliably reach static positioning accuracies below 35 μm throughout its working volume without any prior calibration or error mapping. This is a significant technical development that demonstrated the feasibility of the proposed methods and can have wide-scale industrial applications by enabling low-cost and structural integrity machine tools that could be deployed flexibly as end-effectors of robotic automation, to achieve positional accuracies that were the preserve of large, high-precision machine tools.
Resumo:
Electric vehicles (EVs) provide a feasible solution to reducing greenhouse gas emissions and thus become a hot topic for research and development. Switched reluctance motors (SRMs) are one of promised motors for EV applications. In order to extend the EVs’ driving miles, the use of photovoltaic (PV) panels on the vehicle helps decrease the reliance on vehicle batteries. Based on phase winding characteristics of SRMs, a tri-port converter is proposed in this paper to control the energy flow between the PV panel, battery and SRM. Six operating modes are presented, four of which are developed for driving and two for standstill on-board charging. In the driving modes, the energy decoupling control for maximum power point tracking (MPPT) of the PV panel and speed control of the SRM are realized. In the standstill charging modes, a grid-connected charging topology is developed without a need for external hardware. When the PV panel directly charges the battery, a multi-section charging control strategy is used to optimize energy utilization. Simulation results based on Matlab/Simulink and experiments prove the effectiveness of the proposed tri-port converter, which has potential economic implications to improve the market acceptance of EVs.
Resumo:
Electric vehicles (EVs) and hybrid electric vehicles (HEVs) can reduce greenhouse gas emissions while switched reluctance motor (SRM) is one of the promising motor for such applications. This paper presents a novel SRM fault-diagnosis and fault-tolerance operation solution. Based on the traditional asymmetric half-bridge topology for the SRM driving, the central tapped winding of the SRM in modular half-bridge configuration are introduced to provide fault-diagnosis and fault-tolerance functions, which are set idle in normal conditions. The fault diagnosis can be achieved by detecting the characteristic of the excitation and demagnetization currents. An SRM fault-tolerance operation strategy is also realized by the proposed topology, which compensates for the missing phase torque under the open-circuit fault, and reduces the unbalanced phase current under the short-circuit fault due to the uncontrolled faulty phase. Furthermore, the current sensor placement strategy is also discussed to give two placement methods for low cost or modular structure. Simulation results in MATLAB/Simulink and experiments on a 750-W SRM validate the effectiveness of the proposed strategy, which may have significant implications and improve the reliability of EVs/HEVs.
Resumo:
Plug-in hybrid electric vehicles (PHEVs) provide much promise in reducing greenhouse gas emissions and, thus, are a focal point of research and development. Existing on-board charging capacity is effective but requires the use of several power conversion devices and power converters, which reduce reliability and cost efficiency. This paper presents a novel three-phase switched reluctance (SR) motor drive with integrated charging functions (including internal combustion engine and grid charging). The electrical energy flow within the drivetrain is controlled by a power electronic converter with less power switching devices and magnetic devices. It allows the desired energy conversion between the engine generator, the battery, and the SR motor under different operation modes. Battery-charging techniques are developed to operate under both motor-driving mode and standstill-charging mode. During the magnetization mode, the machine's phase windings are energized by the dc-link voltage. The power converter and the machine phase windings are controlled with a three-phase relay to enable the use of the ac-dc rectifier. The power converter can work as a buck-boost-type or a buck-type dc-dc converter for charging the battery. Simulation results in MATLAB/Simulink and experiments on a 3-kW SR motor validate the effectiveness of the proposed technologies, which may have significant economic implications and improve the PHEVs' market acceptance.
Resumo:
The increase in the efficiency of photo-voltaic systems has been the object of various studies the past few years. One possible way to increase the power extracted by a photovoltaic panel is the solar tracking, performing its movement in order to follow the sun’s path. One way to activate the tracking system is using an electric induction motor, which should have sufficient torque and low speed, ensuring tracking accuracy. With the use of voltage source inverters and logic devices that generate the appropriate switching is possible to obtain the torque and speed required for the system to operate. This paper proposes the implementation of a angular position sensor and a driver to be applied in solar tracker built at a Power Electronics and Renewable Energies Laboratory, located in UFRN. The speed variation of the motor is performed via a voltage source inverter whose PWM command to actuate their keys will be implemented in an FPGA (Field Programmable Gate Array) device and a TM4C microcontroller. A platform test with an AC induction machine of 1.5 CV was assembled for the comparative testing. The angular position sensor of the panel is implemented in a ATMega328 microcontroller coupled to an accelerometer, commanded by an Arduino prototyping board. The solar position is also calculated by the microcontroller from the geographic coordinates of the site where it was placed, and the local time and date obtained from an RTC (Real-Time Clock) device. A prototype of a solar tracker polar axis moved by a DC motor was assembled to certify the operation of the sensor and to check the tracking efficiency.
Resumo:
For decades, the development, construction, track ownership and operation of mainline railways in China have been overseen by the state-owned authorities. From mid-90’s, the mainline railway management has undergone revamps to revitalize the intra-modal competitiveness of railway transportation and to steer it toward the direction of modern business management. With the rapid economic growth; the large-scale expansion of the mainline network; and the increasing expectation on service, the mainline railways in China require further restructuring. Inevitably, a sustainable approach to ensure business viability and service quality in the next few decades is an imminent challenge. This paper reviews the operations and management of mainline railway in China and discusses the possibility of introducing open access market. Drawing the experiences on railway open markets outside China, the discussions include the need and feasibility of railway open market in China; and the suitability and limitations of different models. Particular considerations will be given to the unique characteristics of the mainline railways in China, where the developments across neighbouring regions are unbalanced; freight and passenger services are of similar demands; and the high-speed train operations are operated with low-speed ones in mixed traffic.
Resumo:
Autonomous underwater vehicles (AUVs) are increasingly used, both in military and civilian applications. These vehicles are limited mainly by the intelligence we give them and the life of their batteries. Research is active to extend vehicle autonomy in both aspects. Our intent is to give the vehicle the ability to adapt its behavior under different mission scenarios (emergency maneuvers versus long duration monitoring). This involves a search for optimal trajectories minimizing time, energy or a combination of both. Despite some success stories in AUV control, optimal control is still a very underdeveloped area. Adaptive control research has contributed to cost minimization problems, but vehicle design has been the driving force for advancement in optimal control research. We look to advance the development of optimal control theory by expanding the motions along which AUVs travel. Traditionally, AUVs have taken the role of performing the long data gathering mission in the open ocean with little to no interaction with their surroundings, MacIver et al. (2004). The AUV is used to find the shipwreck, and the remotely operated vehicle (ROV) handles the exploration up close. AUV mission profiles of this sort are best suited through the use of a torpedo shaped AUV, Bertram and Alvarez (2006), since straight lines and minimal (0 deg - 30 deg) angular displacements are all that are necessary to perform the transects and grid lines for these applications. However, the torpedo shape AUV lacks the ability to perform low-speed maneuvers in cluttered environments, such as autonomous exploration close to the seabed and around obstacles, MacIver et al. (2004). Thus, we consider an agile vehicle capable of movement in six degrees of freedom without any preference of direction.
Resumo:
Introduction Government promotion of active transport has renewed interest in cycling safety. Research has shown that bicyclists are up to 20 times more likely to be involved in serious injury crashes than drivers. On-road cycling injuries are under-reported in police data, and many non-serious injuries are not recorded in any official database. This study aims to explore the relationships between rider characteristics and environmental factors that influence per kilometre risk of bicycle-related crash and non-crash injuries. Method A survey of 2,532 Queensland adults who had ridden at least once in the past year was conducted from October 2009 to March 2010, with most responses received online (99.3%). Riders were asked where they rode (footpath, bike path, road etc.), average travel speed, purpose of riding, type of bike ridden, how far and how often they rode in. Measures of rider experience, skill, safety perceptions, safety behaviours, crash involvement and demographic characteristics were also collected. RESULTS Increasing exposure and having more expensive bicycles were shown to reduce the risk per km of crash and non-crash injury rates, and to reduce perceived risk. Never wearing bright coloured clothing related to increased crash risk, use of fluorescent and reflective clothing had no effect on crash risk. Riding in low-speed environments, never using a front light, and riding in low-speed environments were associated with reduced non-crash injury risk. Perceived risk was influenced by exposure, use of conspicuity aids and helmets, riding for utilitarian reasons, and group-riding behaviours. DISCUSSION Perceived risk does not appear to influence injury rates and injury rates do not appear to influence the perceived risk of cycling. Riders who perceive cycling to be risky tend not to be commuters, do not engage in group riding and always wear helmets. Not all measures of conspicuity were associated with risk, with rear lights found to have no relationship to injury. The risks of experiencing a crash or non-crash injury were similar, therefore injury prevention strategies should expand their scope to include other factors such as the importance of bicycle set-up.