976 resultados para Local Adaptation
Resumo:
Pós-graduação em Ciências Biológicas (Botânica) - IBB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A central question in evolutionary biology is how interactions between organisms and the environment shape genetic differentiation. The pathogen Batrachochytrium dendrobatidis (Bd) has caused variable population declines in the lowland leopard frog (Lithobates yavapaiensis); thus, disease has potentially shaped, or been shaped by, host genetic diversity. Environmental factors can also influence both amphibian immunity and Bd virulence, confounding our ability to assess the genetic effects on disease dynamics. Here, we used genetics, pathogen dynamics, and environmental data to characterize L.yavapaiensis populations, estimate migration, and determine relative contributions of genetic and environmental factors in predicting Bd dynamics. We found that the two uninfected populations belonged to a single genetic deme, whereas each infected population was genetically unique. We detected an outlier locus that deviated from neutral expectations and was significantly correlated with mortality within populations. Across populations, only environmental variables predicted infection intensity, whereas environment and genetics predicted infection prevalence, and genetic diversity alone predicted mortality. At one locality with geothermally elevated water temperatures, migration estimates revealed source-sink dynamics that have likely prevented local adaptation. We conclude that integrating genetic and environmental variation among populations provides a better understanding of Bd spatial epidemiology, generating more effective conservation management strategies for mitigating amphibian declines.
Resumo:
O artigo apresenta a caraterização e a análise dos ladrilhos utilizados em construções do século XVIII, na cidade de Paranaguá, no Estado do Paraná, avaliando principalmente sua composição química. Através da análise de microscópio eletrônico de varredura foi possível coletar informações que permitiram interpretações sobre a composição dessas peças. Em Paranaguá, grande parte das edificações setecentistas possui paredes em alvenaria de pedra enquanto a utilização desses ladrilhos esteve restrita às estruturas dos quadros de portas e janelas, como alternativa às vergas e umbrais de cantaria ou madeira usados em construções até a primeira metade do século XIX. Algumas ruínas existentes no centro histórico revelam fortes indícios dos materiais empregados, modo de assentamento e dimensões desses ladrilhos. Essas peças são mais delgadas do que os tijolos, ressaltando que estes elementos foram bastante empregados a partir da segunda metade do século XIX. Observando os ladrilhos a olho nu, é possível verificar a variedade de agregados que compõem as argilas. Sendo assim, este trabalho é uma contribuição para a história dos materiais e das técnicas construtivas da cidade de Paranaguá e sua relação de influências com a metrópole portuguesa, ao mesmo tempo em que permitiu apropriações e adaptações locais.
Resumo:
Species with a wide geographical distribution are often composed of distinct subgroups which may be adapted to their local environment. European trout (Salmo trutta species complex) provide an example of such a complex consisting of several genetically and ecologically distinct forms. However, trout populations are strongly influenced by human activities, and it is unclear to what extent neutral and adaptive genetic differences have persisted. We sampled 30 Swiss trout populations from heterogeneous environments along replicated altitudinal gradients in three major European drainages. More than 850 individuals were genotyped at 18 microsatellite loci which included loci diagnostic for evolutionary lineages and candidate markers associated with temperature tolerance, reproductive timing and immune defence. We find that the phylogeographic structure of Swiss trout populations has not been completely erased by stocking. Distinct genetic clusters corresponding to the different drainages could be identified, although nonindigenous alleles were clearly present, especially in the two Mediterranean drainages. We also still detected neutral genetic differentiation within rivers which was often associated with the geographical distance between populations. Five loci showed evidence of divergent selection between populations with several drainage-specific patterns. Lineage-diagnostic markers, a marker linked to a quantitative trait locus for upper temperature tolerance in other salmonids and a marker linked to the major histocompatibility class I gene were implicated in local adaptation and some patterns were associated with altitude. In contrast, tentative evidence suggests a signal of balancing selection at a second immune relevant gene (TAP2). Our results confirm the persistence of both neutral and potentially adaptive genetic differences between trout populations in the face of massive human-mediated dispersal.
Resumo:
Background Levels of differentiation among populations depend both on demographic and selective factors: genetic drift and local adaptation increase population differentiation, which is eroded by gene flow and balancing selection. We describe here the genomic distribution and the properties of genomic regions with unusually high and low levels of population differentiation in humans to assess the influence of selective and neutral processes on human genetic structure. Methods Individual SNPs of the Human Genome Diversity Panel (HGDP) showing significantly high or low levels of population differentiation were detected under a hierarchical-island model (HIM). A Hidden Markov Model allowed us to detect genomic regions or islands of high or low population differentiation. Results Under the HIM, only 1.5% of all SNPs are significant at the 1% level, but their genomic spatial distribution is significantly non-random. We find evidence that local adaptation shaped high-differentiation islands, as they are enriched for non-synonymous SNPs and overlap with previously identified candidate regions for positive selection. Moreover there is a negative relationship between the size of islands and recombination rate, which is stronger for islands overlapping with genes. Gene ontology analysis supports the role of diet as a major selective pressure in those highly differentiated islands. Low-differentiation islands are also enriched for non-synonymous SNPs, and contain an overly high proportion of genes belonging to the 'Oncogenesis' biological process. Conclusions Even though selection seems to be acting in shaping islands of high population differentiation, neutral demographic processes might have promoted the appearance of some genomic islands since i) as much as 20% of islands are in non-genic regions ii) these non-genic islands are on average two times shorter than genic islands, suggesting a more rapid erosion by recombination, and iii) most loci are strongly differentiated between Africans and non-Africans, a result consistent with known human demographic history.
Resumo:
BACKGROUND: The sensory drive hypothesis predicts that divergent sensory adaptation in different habitats may lead to premating isolation upon secondary contact of populations. Speciation by sensory drive has traditionally been treated as a special case of speciation as a byproduct of adaptation to divergent environments in geographically isolated populations. However, if habitats are heterogeneous, local adaptation in the sensory systems may cause the emergence of reproductively isolated species from a single unstructured population. In polychromatic fishes, visual sensitivity might become adapted to local ambient light regimes and the sensitivity might influence female preferences for male nuptial color. In this paper, we investigate the possibility of speciation by sensory drive as a byproduct of divergent visual adaptation within a single initially unstructured population. We use models based on explicit genetic mechanisms for color vision and nuptial coloration. RESULTS: We show that in simulations in which the adaptive evolution of visual pigments and color perception are explicitly modeled, sensory drive can promote speciation along a short selection gradient within a continuous habitat and population. We assumed that color perception evolves to adapt to the modal light environment that individuals experience and that females prefer to mate with males whose nuptial color they are most sensitive to. In our simulations color perception depends on the absorption spectra of an individual's visual pigments. Speciation occurred most frequently when the steepness of the environmental light gradient was intermediate and dispersal distance of offspring was relatively small. In addition, our results predict that mutations that cause large shifts in the wavelength of peak absorption promote speciation, whereas we did not observe speciation when peak absorption evolved by stepwise mutations with small effect. CONCLUSION: The results suggest that speciation can occur where environmental gradients create divergent selection on sensory modalities that are used in mate choice. Evidence for such gradients exists from several animal groups, and from freshwater and marine fishes in particular. The probability of speciation in a continuous population under such conditions may then critically depend on the genetic architecture of perceptual adaptation and female mate choice.
Resumo:
The maintenance of separated diploid and polyploid populations within a contact zone is possible due to both prezygotic and postzygotic isolation mechanisms. Niche differentiation between two cytotypes may be an important prezygotic isolating mechanism and can be studied using reciprocal transplant experiments. We investigated niche differentiation between diploid and hexaploid Aster amellus in their contact zone in the Czech Republic. Diploid populations are confined to habitats with low productivity, whereas hexaploid populations occur in habitats with both low and high productivity. Thus, we chose three diploid populations and six hexaploid populations, three in each of the two different habitat types. We analyzed habitat characteristics and carried out reciprocal transplant experiments in the field using both seeds and adult plants. Sites of diploid and hexaploid populations differed significantly in vegetation and soil properties. The mean number of juveniles was higher at sites of home ploidy level than at sites of foreign ploidy level, suggesting niche differentiation between the two cytotypes. On the other hand, transplanted adult plants survived at all sites and juvenile plants were able to establish at some sites of the foreign cytotype. Furthermore, the mean number of juveniles, survival, and flowering percentages were higher at home sites than at foreign sites, indicating local adaptation. We conclude that niche differentiation between the two cytotypes and local adaptation within each cytotype may contribute to the maintenance of diploid and hexaploid populations of A. amellus in their contact zone. Moreover, further factors, such as differences in flowering phenology and exclusion of minority cytotypes, should also be considered.
Resumo:
Echinococcus multilocularis is characterised by a wide geographical distribution, encompassing three continents (North America, Asia and Europe) yet very low genetic variability is documented. Recently, this parasite has been detected in red foxes (Vulpes vulpes) circulating in an Alpine region of Italy, close to Austria. This finding raised the question as to whether an autochthonous cycle exists in Italy or whether the infected foxes originated from the neighbouring regions of Austria. Studies have shown that multi-locus microsatellite analysis can identify genomic regions carrying mutations that result in a local adaptation. We used a tandem repeated multi-locus microsatellite (EmsB) to evaluate the genetic differences amongst adult worms of E. multilocularis collected in Italy, worms from neighbouring Austria and from other European and extra-European countries. Fluorescent PCR was performed on a panel of E. multilocularis samples to assess intra-specific polymorphism. The analysis revealed four closed genotypes for Italian samples of E. multilocularis which were unique compared with the other 25 genotypes from Europe and the five genotypes from Alaska. An analysis in the Alpine watershed, comparing Italian adult worms with those from neighbouring areas in Austria, showed a unique cluster for Italian samples. This result supports the hypothesis of the presence of an autochthonous cycle of E. multilocularis in Italy. EmsB can be useful for 'tracking' the source of infection of this zoonotic parasite and developing appropriate measures for preventing or reducing the risk of human alveolar echinococcosis.
Resumo:
The phylogeographic population structure of Mycobacterium tuberculosis suggests local adaptation to sympatric human populations. We hypothesized that HIV infection, which induces immunodeficiency, will alter the sympatric relationship between M. tuberculosis and its human host. To test this hypothesis, we performed a nine-year nation-wide molecular-epidemiological study of HIV-infected and HIV-negative patients with tuberculosis (TB) between 2000 and 2008 in Switzerland. We analyzed 518 TB patients of whom 112 (21.6%) were HIV-infected and 233 (45.0%) were born in Europe. We found that among European-born TB patients, recent transmission was more likely to occur in sympatric compared to allopatric host-pathogen combinations (adjusted odds ratio [OR] 7.5, 95% confidence interval [95% CI] 1.21-infinity, p = 0.03). HIV infection was significantly associated with TB caused by an allopatric (as opposed to sympatric) M. tuberculosis lineage (OR 7.0, 95% CI 2.5-19.1, p<0.0001). This association remained when adjusting for frequent travelling, contact with foreigners, age, sex, and country of birth (adjusted OR 5.6, 95% CI 1.5-20.8, p = 0.01). Moreover, it became stronger with greater immunosuppression as defined by CD4 T-cell depletion and was not the result of increased social mixing in HIV-infected patients. Our observation was replicated in a second independent panel of 440 M. tuberculosis strains collected during a population-based study in the Canton of Bern between 1991 and 2011. In summary, these findings support a model for TB in which the stable relationship between the human host and its locally adapted M. tuberculosis is disrupted by HIV infection.
Resumo:
Altitudinal gradients offer valuable study systems to investigate how adap- tive genetic diversity is distributed within and between natural populations and which factors promote or prevent adaptive differentiation. The environ- mental clines along altitudinal gradients tend to be steep relative to the dispersal distance of many organisms, providing an opportunity to study the joint effects of divergent natural selection and gene flow. Temperature is one variable showing consistent altitudinal changes, and altitudinal gradi- ents can therefore provide spatial surrogates for some of the changes antici- pated under climate change. Here, we investigate the extent and patterns of adaptive divergence in animal populations along altitudinal gradients by sur- veying the literature for (i) studies on phenotypic variation assessed under common garden or reciprocal transplant designs and (ii) studies looking for signatures of divergent selection at the molecular level. Phenotypic data show that significant between-population differences are common and taxo- nomically widespread, involving traits such as mass, wing size, tolerance to thermal extremes and melanization. Several lines of evidence suggest that some of the observed differences are adaptively relevant, but rigorous tests of local adaptation or the link between specific phenotypes and fitness are sorely lacking. Evidence for a role of altitudinal adaptation also exists for a number of candidate genes, most prominently haemoglobin, and for anony- mous molecular markers. Novel genomic approaches may provide valuable tools for studying adaptive diversity, also in species that are not amenable to experimentation.
Resumo:
Studies of intraspecific morphological variation in fishes have traditionally focused on freshwater rather than marine species. In addition, such studies typically focus on adults, although causes and intensities of selective pressures most likely vary through an individual’s lifetime. In this study, body and head shape of a marine species, shiner perch Cymatogaster aggregata Gibbons were compared among localities along the Pacific Northwest coast of North America. Evidence was found for intraspecific variation in ontogenetic allometry, and for a closer correlation of body shape with environment rather than geographical proximity. This correlation with environment was more evident in younger fish, thereby demonstrating the importance of analysing multiple life stages. A common garden experiment suggests both environmental and genetic bases for the observed differences. Recognizing intraspecific ecomorphological complexity and its specificity to habitat and/or life stage can have important consequences for understanding the role of local adaptation and population dynamics in macroecology.
Resumo:
Plants differ greatly in their susceptibility to insect herbivory, suggesting both local adaptation and resistance tradeoffs. We used maize (Zea mays) recombinant inbred lines to map a quantitative trait locus (QTL) for the maize leaf aphid (Rhopalosiphum maidis) susceptibility to maize Chromosome 1. Phytochemical analysis revealed that the same locus was also associated with high levels of 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside (HDMBOA-Glc) and low levels of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside (DIMBOA-Glc). In vitro enzyme assays with candidate genes from the region of the QTL identified three O-methyltransferases (Bx10a-c) that convert DIMBOA-Glc to HDMBOA-Glc. Variation in HDMBOA-Glc production was attributed to a natural CACTA family transposon insertion that inactivates Bx10c in maize lines with low HDMBOA-Glc accumulation. When tested with a population of 26 diverse maize inbred lines, R. maidis produced more progeny on those with high HDMBOA-Glc and low DIMBOA-Glc. Although HDMBOA-Glc was more toxic to R. maidis than DIMBOA-Glc in vitro, BX10c activity and the resulting decline of DIMBOA-Glc upon methylation to HDMBOA-Glc were associated with reduced callose deposition as an aphid defense response in vivo. Thus, a natural transposon insertion appears to mediate an ecologically relevant trade-off between the direct toxicity and defense-inducing properties of maize benzoxazinoids.
Resumo:
Duplicate genes emerge as copy-number variations (CNVs) at the population level, and remain copy-number polymorphic until they are fixed or lost. The successful establishment of such structural polymorphisms in the genome plays an important role in evolution by promoting genetic diversity, complexity and innovation. To characterize the early evolutionary stages of duplicate genes and their potential adaptive benefits, we combine comparative genomics with population genomics analyses to evaluate the distribution and impact of CNVs across natural populations of an eco-genomic model, the three-spined stickleback. With whole genome sequences of 66 individuals from populations inhabiting three distinct habitats, we find that CNVs generally occur at low frequencies and are often only found in one of the 11 populations surveyed. A subset of CNVs, however, displays copy-number differentiation between populations, showing elevated within-population frequencies consistent with local adaptation. By comparing teleost genomes to identify lineage-specific genes and duplications in sticklebacks, we highlight rampant gene content differences among individuals in which over 30% of young duplicate genes are CNVs. These CNV genes are evolving rapidly at the molecular level and are enriched with functional categories associated with environmental interactions, depicting the dynamic early copy-number polymorphic stage of genes during population differentiation.
Resumo:
Gene flow is usually thought to reduce genetic divergence and impede local adaptation by homogenising gene pools between populations. However, evidence for local adaptation and phenotypic differentiation in highly mobile species, experiencing high levels of gene flow, is emerging. Assessing population genetic structure at different spatial scales is thus a crucial step towards understanding mechanisms underlying intraspecific differentiation and diversification. Here, we studied the population genetic structure of a highly mobile species – the great tit Parus major – at different spatial scales. We analysed 884 individuals from 30 sites across Europe including 10 close-by sites (< 50 km), using 22 microsatellite markers. Overall we found a low but significant genetic differentiation among sites (FST = 0.008). Genetic differentiation was higher, and genetic diversity lower, in south-western Europe. These regional differences were statistically best explained by winter temperature. Overall, our results suggest that great tits form a single patchy metapopulation across Europe, in which genetic differentiation is independent of geographical distance and gene flow may be regulated by environmental factors via movements related to winter severity. This might have important implications for the evolutionary trajectories of sub-populations, especially in the context of climate change, and calls for future investigations of local differences in costs and benefits of philopatry at large scales.