913 resultados para Load voltage control


Relevância:

90.00% 90.00%

Publicador:

Resumo:

IGBTs realise high-performance power converters. Unfortunately, with fast switching of the IGBT-free wheel diode chopper cell, such circuits are intrinsic sources of high-level EMI. Therefore, costly EMI filters or shielding are normally needed on the load and supply side. In order to design these EMI suppression components, designers need to predict the EMI level with reasonable accuracy for a given structure and operating mode. Simplifying the transient IGBT switching current and voltage into a multiple slope switching waveform approximation offers a feasible way to estimate conducted EMI with some accuracy. This method is dependent on the availability of high-fidelity measurements. Also, that multiple slope approximation needs careful and time-costly IGBT parameters optimisation process to approach the real switching waveform. In this paper, Active Voltage Control Gate Drive(AVC GD) is employed to shape IGBT switching into several defined slopes. As a result, Conducted EMI prediction by multiple slope switching approximation could be more accurate, less costly but more friendly for implementation. © 2013 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thyristors are usually three-terminal devices that have four layers of alternating p-type and n-type material (i.e. three p-n junctions) comprising its main power handling section. In contrast to the linear relation which exists between load and control currents in a transistor, the thyristor is bistable. The control terminal of the thyristor, called the gate (G) electrode, may be connected to an integrated and complex structure as a part of the device. Thyristors are used to approximate ideal closed (no voltage drop between anode and cathode) or open (no anode current flow) switches for control of power flow in a circuit. This differs from low-level digital switching circuits that are designed to deliver two distinct small voltage levels while conducting small currents (ideally zero). Thyristor circuits must have the capability of delivering large currents and be able to withstand large externally applied voltages. All thyristor types are controllable in switching from a forward-lockingstate (positive potential applied to the anode with respect to the cathode, with correspondingly little anode current flow) into a forward-conduction state (large forward anode current flowing, with a small anode-cathode potential drop). Most thyristors have the characteristic that after switching from a forward-blocking state into the forward-conduction state, the gate signal can be removed and the thyristor will remain in its forward-conduction mode. This property is termed "latching" and is an important distinction between thyristors and other types of power electronic devices. © 2007 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Damping torque analysis is a well-developed technique for understanding and studying power system oscillations. This paper presents the applications of damping torque analysis for DC bus implemented damping control in power transmission networks in two examples. The first example is the investigation of damping effect of shunt VSC (Voltage Source Converter) based FACTS voltage control, i.e., STATCOM (Static Synchronous Compensator) voltage control. It is shown in the paper that STATCOM voltage control mainly contributes synchronous torque and hence has little effect on the damping of power system oscillations. The second example is the damping control implemented by a Battery Energy Storage System (BESS) installed in a power system. Damping torque analysis reveals that when BESS damping control is realized by regulating exchange of active and reactive power between the BESS and power system respectively, BESS damping control exhibits different properties. It is concluded by damping torque analysis that BESS damping control implemented by regulating active power is better with less interaction with BESS voltage control and more robust to variations of power system operating conditions. In the paper, all analytical conclusions obtained are demonstrated by simulation results of example power systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Power back-off performances of the modified power-combining Class-E amplifier under different amplitudemodulation schemes such as envelope elimination and restoration (EER) and envelope tracking (ET) are experimentally assessed in this paper. The modified output load network adopting three-harmonic terminations technique eliminates the need for additional lossy filtering section in the transmitter chain. Small dc-feed inductances rather than massive RF chokes as in the classic Class-E amplifier are used so as to increase the modulation bandwidth and therefore improve the linearity of the EER transmitter. High efficiency over a wide dynamic range using amplitude modulation through drain-voltage control (EER) was achieved and this agrees well with the Class-E theoretical prediction. When the PA was used within the ET scheme, an increase of average drain efficiency of as high as 40% with respect to the CW excitation was obtained for a multi-carrier input signal with 12dB peak-to-average power ratio. © 2011 Institut fur Mikrowellen.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a voltage and power quality enhancement scheme for a doubly-fed induction generator (DFIG) wind farm during variable wind conditions. The wind profiles were derived considering the measured data at a DFIG wind farm located in Northern Ireland (NI). The aggregated DFIG wind farm model was validated using measured data at a wind farm during variable generation. The voltage control strategy was developed considering the X/R ratio of the wind farm feeder which connects the wind farm and the grid. The performance of the proposed strategy was evaluated for different X/R ratios, and wind profiles with different characteristics. The impact of flicker propagation along the wind farm feeder and effectiveness of the proposed strategy is also evaluated with consumer loads connected to the wind farm feeder. It is shown that voltage variability and short-term flicker severity is significantly reduced following implementation of the novel strategy described.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper is concerned with the voltage and reactive power issues surrounding the connection of Distributed Generation (DG) on the low-voltage (LV) distribution network. The presented system-wide voltage control algorithm consists of three stages. Firstly available reactive power reserves are utilized. Then, if required, DG active power output is curtailed. Finally, curtailment of non-critical site demand is considered. The control methodology is tested on a variant of the 13-bus IEEE Node Radial Distribution Test Feeder. The presented control algorithm demonstrated that the distribution system operator (DSO) can maintain voltage levels within a desired statutory range by dispatching reactive power from DG or network devices. The practical application of the control strategy is discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Novel egg-laying boards were found to be effective in the biological control of the freshwater fish louse Argulus foliaceus in a 12.9 ha rainbow trout Oncorhynchus mykiss fishery which had a high prevalence and intensity of infection of juvenile parasites in the early spring of 1999. Approximately 228 000d during an extensive 14 week period of egg laying which peaked in June 1999. In contrast, only 1566 clutches were harvested in 2000, when egg laying activity showed a bi-modal distribution, peaking in May and again in July and August. iaceus on rainbow trout in consecutive years was 2.9 : 1 and 2.1 : 1. Estimates of the size of the female A. foliaceus population based on egg-laying activity in 1999 exceeded that derived from measurements of prevalence and intensity of infection, whereas in 2000, this was more in balance. A minimum temperature of 10 degree C was identified for egg laying, which occurred continuously from May to October in a broadly synchronous manner.. Copyright 2002 The Fisheries Society of the British Isles

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Wind power is one of the most developed renewable energy resources worldwide. To integrate offshore wind farms to onshore grids, the high-voltage direct current (HVDC) transmission cables interfaced with voltage source converters (VSCs) are considered to be a better solution than conventional approaches. Proper DC voltage indicates successive power transfer. To connect more than one onshore grid, the DC voltage droop control is one of the most popular methods to share the control burden between different terminals. However, the challenges are that small droop gains will cause voltage deviations, while higher droop gain settings will cause large oscillations. This study aims to enhance the performance of the traditional droop controller by considering the DC cable dynamics. Based on the backstepping control concept, DC cables are modelled with a series of capacitors and inductors. The final droop control law is deduced step-by-step from the original remote side. At each step the control error from the previous step is considered. Simulation results show that both the voltage deviations and oscillations can be effectively reduced using the proposed method. Further, power sharing between different terminals can be effectively simplified such that it correlates linearly with the droop gains, thus enabling simple yet accurate system operation and control.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Les canaux ioniques dépendants du voltage sont responsables de l'initiation et de la propagation des potentiels d'action dans les cellules excitables. De nombreuses maladies héréditaires (channelopathies) sont associées à un contrôle défectueux du voltage par ces canaux (arythmies, épilepsie, etc.). L’établissement de la relation structure-fonction exacte de ces canaux est donc crucial pour le développement de nouveaux agents thérapeutiques spécifiques. Dans ce contexte, le canal procaryote dépendant du voltage et sélectif au potassium KvAP a servi de modèle d’étude afin d’approfondir i) le processus du couplage électromécanique, ii) l’influence des lipides sur l’activité voltage-dépendante et iii) l’inactivation de type closed-state. Afin de pallier à l’absence de données structurales dynamiques du côté cytosolique ainsi que de structure cristalline dans l’état fermé, nous avons mesuré le mouvement du linker S4-S5 durant le gating par spectroscopie de fluorescence (LRET). Pour ce faire, nous avons utilisé une technique novatrice du contrôle de l’état conformationnel du canal en utilisant les lipides (phospholipides et non phospholipides) au lieu du voltage. Un modèle dans l’état fermé a ainsi été produit et a démontré qu’un mouvement latéral modeste de 4 Å du linker S4-S5 est suffisant pour mener à la fermeture du pore de conduction. Les interactions lipides - canaux jouent un rôle déterminant dans la régulation de la fonction des canaux ioniques mais ne sont pas encore bien caractérisées. Nous avons donc également étudié l’influence de différents lipides sur l’activation voltage - dépendante de KvAP et mis en évidence deux sites distincts d’interactions menant à des effets différents : au niveau du senseur de voltage, menant au déplacement de la courbe conductance-voltage, et du côté intracellulaire, influençant le degré de la pente de cette même courbe. Nous avons également démontré que l’échange de lipides autour de KvAP est extrêmement limité et affiche une dépendance à l’état conformationnel du canal, ne se produisant que dans l’état ouvert. KvAP possède une inactivation lente particulière, accessible depuis l'état ouvert. Nous avons étudié les effets de la composition lipidique et de la température sur l'entrée dans l'état inactivé et le temps de récupération. Nous avons également utilisé la spectroscopie de fluorescence (quenching) en voltage imposé afin d'élucider les bases moléculaires de l’inactivation de type closed-state. Nous avons identifié une position à la base de l’hélice S4 qui semble impliquée à la fois dans le mécanisme responsable de ce type d'inactivation et dans la récupération particulièrement lente qui est typique du canal KvAP.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work presents a new high power factor three-phase rectifier based on a Y-connected differential autotransformer with reduced kVA and 18-pulse input current followed by three DC-DC boost converters. The topology provides a regulated output voltage and natural three-phase input power factor correction. The lowest input current harmonic components are the 17th and the 19th. Three boost converters, with constant input currents and regulated parallel connected output voltages are used to process 4kW each one. Analytical results from Fourier analyses of winding currents and the vector diagram of winding voltages are presented. Simulation results to verify the proposed concept and experimental results are shown in the paper.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A linearly-tunable ULV transconductor featuring excellent stability of the processed signal common-mode voltage upon tuning, critical for very-low voltage applications, is presented. Its employment to the synthesis of CMOS gm-C high-frequency and voiceband filters is discussed. SPICE data describe the filter characteristics. For a 1.3 V-supply, their nominal passband frequencies are 1.0 MHz and 3.78 KHz, respectively, with tuning rates of 12.52 KHz/mV and 0.16 KHz/m V, input-referred noise spectral density of 1.3 μV/Hz1/2 and 5.0μV/Hz1/2 and standby consumption of 0.87 mW and 11.8 μW. Large-signal distortion given by THD = 1% corresponds to a differential output-swing of 360 mVpp and 480 mVpp, respectively. Common-mode voltage deviation is less than 4 mV over tuning interval.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A simple constant-current electrocutaneous stimulator for high-impedance loads using low-cost, standard high-voltage components is presented. A voltage-regulator powers an oscillator built across the primary of a transformer whose secondary delivers, after rectification, the high-voltage supply to switched current-mirrors in the driving stage. Since the compliance high-voltage is proportional to the stimulation current, overall power consumption is minimized. By adjusting the regulated voltage, control of the pulsed-current amplitude is achieved. A prototype with readily available components features stimulation currents of amplitude and pulsewidth in the range 0≤Iskin≤20mA and 50μs ≤Tpulse≤1ms, respectively. Pulse-repetition spans from 1 Hz to 10Hz. Worst-case ripple is 3.7% @Iskin=1mA. Measured pulse fall-time is shorter than 32μs. Overall consumption is 4.4W @Iskin=20mA. Subject isolation from line is 4KV.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An overview is given on the possibility of controlling the status of circuit breakers (CB) in a substations with the use of a knowledge base that relates some of the operation magnitudes, mixing status variables with time variables and fuzzy sets. It is shown that even when all the magnitudes to be controlled cannot be included in the analysis, it is possible to control the desired status while supervising some important magnitudes as the voltage, power factor, and harmonic distortion, as well as the present status.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Maximum Power Point tracking (MPPT) in photovoltaic (PV) systems may be achieved by controlling either the voltage or current of the PV device. There is no consensus in the technical literature about how is the best choice. This paper provides a comparative analysis performance among current and voltage control using two different MPPT strategies: the perturb and observe (P&O) and the incremental conductance techniques. © 2011 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper proposes a new methodology to control the power flow between a distributed generator (DG) and the electrical power distribution grid. It is used the droop voltage control to manage the active and reactive power. Through this control a sinusoidal voltage reference is generated to be tracked by voltage loop and this loop generates the current reference for the current loop. The proposed control introduces feed-forward states improving the control performance in order to obtain high quality for the current injected to the grid. The controllers were obtained through the linear matrix inequalities (LMI) using the D-stability analysis to allocate the closed-loop controller poles. Therefore, the results show quick transient response with low oscillations. Thus, this paper presents the proposed control technique, the main simulation results and a prototype with 1000VA was developed in the laboratory in order to demonstrate the feasibility of the proposed control. © 2012 IEEE.