915 resultados para Liquor traffic.
Resumo:
Traffic safety studies demand more than what current micro-simulation models can provide as they presume that all drivers exhibit safe behaviors. All the microscopic traffic simulation models include a car following model. This paper highlights the limitations of the Gipps car following model ability to emulate driver behavior for safety study purposes. A safety adapted car following model based on the Gipps car following model is proposed to simulate unsafe vehicle movements, with safety indicators below critical thresholds. The modifications are based on the observations of driver behavior in real data and also psychophysical notions. NGSIM vehicle trajectory data is used to evaluate the new model and short following headways and Time To Collision are employed to assess critical safety events within traffic flow. Risky events are extracted from available NGSIM data to evaluate the modified model against them. The results from simulation tests illustrate that the proposed model can predict the safety metrics better than the generic Gipps model. The outcome of this paper can potentially facilitate assessing and predicting traffic safety using microscopic simulation.
Resumo:
The purpose of traffic law enforcement is to encourage compliant driver behaviour. That is, the threat of an undesirable sanction encourages drivers to comply with traffic laws. However, not all traffic law violations are considered equal. For example, while drink driving is generally seen as socially unacceptable, behaviours such as speeding are arguably less so, and speed enforcement is often portrayed in the popular media as a means of “revenue raising”. The perceived legitimacy of traffic law enforcement has received limited research attention to date. Perceived legitimacy of traffic law enforcement may influence (or be influenced by) attitudes toward illegal driving behaviours, and both of these factors are likely to influence on-road driving behaviour. This study aimed to explore attitudes toward a number of illegal driving behaviours and traffic law enforcement approaches that typically target these behaviours using self-reported data from a large sample of drivers. The results of this research can be used to inform further research in this area, as well as the content of public education and advertising campaigns designed to influence attitudes toward illegal driving behaviours and perceived legitimacy of traffic law enforcement.
Resumo:
Most unsignalised intersection capacity calculation procedures are based on gap acceptance models. Accuracy of critical gap estimation affects accuracy of capacity and delay estimation. Several methods have been published to estimate drivers’ sample mean critical gap, the Maximum Likelihood Estimation (MLE) technique regarded as the most accurate. This study assesses three novel methods; Average Central Gap (ACG) method, Strength Weighted Central Gap method (SWCG), and Mode Central Gap method (MCG), against MLE for their fidelity in rendering true sample mean critical gaps. A Monte Carlo event based simulation model was used to draw the maximum rejected gap and accepted gap for each of a sample of 300 drivers across 32 simulation runs. Simulation mean critical gap is varied between 3s and 8s, while offered gap rate is varied between 0.05veh/s and 0.55veh/s. This study affirms that MLE provides a close to perfect fit to simulation mean critical gaps across a broad range of conditions. The MCG method also provides an almost perfect fit and has superior computational simplicity and efficiency to the MLE. The SWCG method performs robustly under high flows; however, poorly under low to moderate flows. Further research is recommended using field traffic data, under a variety of minor stream and major stream flow conditions for a variety of minor stream movement types, to compare critical gap estimates using MLE against MCG. Should the MCG method prove as robust as MLE, serious consideration should be given to its adoption to estimate critical gap parameters in guidelines.
Resumo:
Traditionally navigational safety analyses rely on historical collision data which is often hampered because of low collision counts, insufficiency in explaining collision causation, and reactive approach to safety. A promising alternative approach that overcomes these problems is using navigational traffic conflicts or near-misses as an alternative to the collision data. This book discusses how traffic conflicts can effectively be used in modeling of port water collision risks. Techniques for measuring and predicting collision risks in fairways, intersections, and anchorages are discussed by utilizing advanced statistical models. Risk measurement models, which quantitatively measure collision risks in waterways, are discussed. To predict risks, a hierarchical statistical modeling technique is discussed which identifies the factors influencing the risks. The modeling techniques are illustrated for Singapore port data. Results showed that traffic conflicts are an ethically appealing alternative to collision data for fast, reliable and effective safety assessment, thus possessing great potential for managing collision risks in port waters.
Resumo:
Findings from an online survey conducted by Queensland University of Technology (QUT) shows that Australia is suffering from a lack of data reflecting trip generation for use in Traffic Impact Assessments (TIAs). Current independent variables for trip generation estimation are not able to create robust outcomes as well. It is also challenging to account for the impact of the new development on public and active transport as well as the effect of trip chaining behaviour in Australian TIA studies. With this background in mind, research is being implemented by QUT to find a new approach developing a combined model of trip generation and mode choice with consideration of trip chaining effects. It is expected that the model will provide transferable outcomes as it is developed based on socio-demographic parameters. Child Care Centres within the Brisbane area have been nominated for model development. At the time, the project is in the data collection phase. Findings from the pilot survey associated with capturing trip chaining and mode choice information reveal that applying questionnaire is able to capture required information in an acceptable level. The result also reveals that several centres within an area should be surveyed in order to provide sufficient data for trip chaining and modal split analysis.
Resumo:
Safety at Railway Level Crossings (RLXs) is an important issue within the Australian transport system. Crashes at RLXs involving road vehicles in Australia are estimated to cost $10 million each year. Such crashes are mainly due to human factors; unintentional errors contribute to 46% of all fatal collisions and are far more common than deliberate violations. This suggests that innovative intervention targeting drivers are particularly promising to improve RLX safety. In recent years there has been a rapid development of a variety of affordable technologies which can be used to increase driver’s risk awareness around crossings. To date, no research has evaluated the potential effects of such technologies at RLXs in terms of safety, traffic and acceptance of the technology. Integrating driving and traffic simulations is a safe and affordable approach for evaluating these effects. This methodology will be implemented in a driving simulator, where we recreated realistic driving scenario with typical road environments and realistic traffic. This paper presents a methodology for evaluating comprehensively potential benefits and negative effects of such interventions: this methodology evaluates driver awareness at RLXs , driver distraction and workload when using the technology . Subjective assessment on perceived usefulness and ease of use of the technology is obtained from standard questionnaires. Driving simulation will provide a model of driving behaviour at RLXs which will be used to estimate the effects of such new technology on a road network featuring RLX for different market penetrations using a traffic simulation. This methodology can assist in evaluating future safety interventions at RLXs.
Resumo:
Exposures to traffic-related air pollution (TRAP) can be particularly high in transport microenvironments (i.e. in and around vehicles) despite the short durations typically spent there. There is a mounting body of evidence that suggests that this is especially true for fine (b2.5 μm) and ultrafine (b100 nm, UF) particles. Professional drivers, who spend extended periods of time in transport microenvironments due to their job, may incur exposures markedly higher than already elevated non-occupational exposures. Numerous epidemiological studies have shown a raised incidence of adverse health outcomes among professional drivers, and exposure to TRAP has been suggested as one of the possible causal factors. Despite this, data describing the range and determinants of occupational exposures to fine and UF particles are largely conspicuous in their absence. Such information could strengthen attempts to define the aetiology of professional drivers' illnesses as it relates to traffic combustion-derived particles. In this article, we suggest that the drivers' occupational fine and UF particle exposures are an exemplar case where opportunities exist to better link exposure science and epidemiology in addressing questions of causality. The nature of the hazard is first introduced, followed by an overview of the health effects attributable to exposures typical of transport microenvironments. Basic determinants of exposure and reduction strategies are also described, and finally the state of knowledge is briefly summarised along with an outline of the main unanswered questions in the topic area.
Resumo:
Traffic safety studies mandate more than what existing micro-simulation models can offer as they postulate that every driver exhibits a safe behaviour. All the microscopic traffic simulation models are consisting of a car-following model and the Gazis–Herman–Rothery (GHR) car-following model is a widely used model. This paper highlights the limitations of the GHR car-following model capability to model longitudinal driving behaviour for safety study purposes. This study reviews and compares different version of the GHR model. To empower the GHR model on precise metrics reproduction a new set of car-following model parameters is offered to simulate unsafe vehicle conflicts. NGSIM vehicle trajectory data is used to evaluate the new model and short following headways and Time to Collision are employed to assess critical safety events within traffic flow. Risky events are extracted from available NGSIM data to evaluate the modified model against the generic versions of the GHR model. The results from simulation tests illustrate that the proposed model does predict the safety metrics better than the generic GHR model. Additionally it can potentially facilitate assessing and predicting traffic facilities’ safety using microscopic simulation. The new model can predict Near-miss rear-end crashes.
Resumo:
This paper studies traffic hysteresis arising in traffic oscillations from a behavioral perspective. It is found that the occurrence and type of traffic hysteresis is closely correlated with driver behavior when experiencing traffic oscillations and with the time driver reaction begins relative to the starting deceleration wave. Statistical results suggest that driver behavior is different depending on its position along the oscillation. This suggests that different car-following models should be used inside the different stages of an oscillation in order to replicate realistic congestion features.
Resumo:
Frequent exposure to ultrafine particles (UFP) is associated with detrimental effects on cardiopulmonary function and health. UFP dose and therefore the associated health risk are a factor of exposure frequency, duration, and magnitude of (therefore also proximity to) a UFP emission source. Bicycle commuters using on-road routes during peak traffic times are sharing a microenvironment with high levels of motorised traffic, a major UFP emission source. Inhaled particle counts were measured along popular pre-identified bicycle commute route alterations of low (LOW) and high (HIGH) motorised traffic to the same inner-city destination at peak commute traffic times. During commute, real-time particle number concentration (PNC; mostly in the UFP range) and particle diameter (PD), heart and respiratory rate, geographical location, and meteorological variables were measured. To determine inhaled particle counts, ventilation rate was calculated from heart-rate-ventilation associations, produced from periodic exercise testing. Total mean PNC of LOW (compared to HIGH) was reduced (1.56 x e4 ± 0.38 x e4 versus 3.06 x e4 ± 0.53 x e4 ppcc; p = 0.012). Total estimated ventilation rate did not vary significantly between LOW and HIGH (43 ± 5 versus 46 ± 9 L•min; p = 0.136); however, due to total mean PNC, accumulated inhaled particle counts were 48% lower in LOW, compared to HIGH (7.6 x e8 ± 1.5 x e8 versus 14.6 x e8 ± 1.8 x e8; p = 0.003). For bicycle commuting at peak morning commute times, inhaled particle counts and therefore cardiopulmonary health risk may be substantially reduced by decreasing exposure to motorised traffic, which should be considered by both bicycle commuters and urban planners.
Resumo:
Understanding the impacts of traffic and climate change on water quality helps decision makers to develop better policy and plans for dealing with unsustainable urban and transport development. This chapter presents detailed methodologies developed for sample collection and testing for heavy metals and total petroleum hydrocarbons, as part of a research study to investigate the impacts of climate change and changes to urban traffic characteristics on pollutant build-up and wash-off from urban road surfaces. Cadmium, chromium, nickel, copper, lead, iron, aluminium, manganese and zinc were the target heavy metals, and selected gasoline and diesel range organics were the target total petroleum hydrocarbons for this study. The study sites were selected to encompass the urban traffic characteristics of the Gold Coast region, Australia. An improved sample collection method referred to as ‘the wet and dry vacuum system’ for the pollutant build-up, and an effective wash-off plan to incorporate predicted changes to rainfall characteristics due to climate change, were implemented. The novel approach to sample collection for pollutant build-up helped to maintain the integrity of collection efficiency. The wash-off plan helped to incorporate the predicted impacts of climate change in the Gold Coast region. The robust experimental methods developed will help in field sample collection and chemical testing of different stormwater pollutants in build-up and wash-off.
Resumo:
Purpose Anecdotal evidence suggests that some sunglass users prefer yellow tints for outdoor activities, such as driving, and research has suggested that such tints improve the apparent contrast and brightness of real-world objects. The aim of this study was to establish whether yellow filters resulted in objective improvements in performance for visual tasks relevant to driving. Methods Response times of nine young (age [mean ± SD], 31.4 ± 6.7 years) and nine older (age, [mean ± SD], 74.6 ± 4.8) adults were measured using video presentations of traffic hazards (driving hazard perception task) and a simple low-contrast grating appeared at random peripheral locations on a computer screen. Response times were compared when participants wore a yellow filter (with and without a linear polarizer) versus a neutral density filter (with and without a linear polarizer). All lens combinations were matched to have similar luminance transmittances (˜27%). Results In the driving hazard perception task, the young but not the older participants responded significantly more rapidly to hazards when wearing a yellow filter than with a luminance-matched neutral density filter (mean difference, 450 milliseconds). In the low-contrast grating task, younger participants also responded more quickly for the yellow filter condition but only when combined with a polarizer. Although response times increased with increasing stimulus eccentricity for the low-contrast grating task, for the younger participants, this slowing of response times with increased eccentricity was reduced in the presence of a yellow filter, indicating that perception of more peripheral objects may be improved by this filter combination. Conclusions Yellow filters improve response times for younger adults for visual tasks relevant to driving.
Resumo:
Social harmony can manifest in many ways. In rapidly motorizing countries like China, a growing area of potential disharmony is road use. The increased ability to purchase a car for the first time and a subsequent increase in new drivers has seen several Chinese cities take unprecedented measures to manage congestion. There is a corresponding need to ensure effective traffic law enforcement in promoting a safe environment for all road users. This paper reports qualitative research conducted with Beijing car drivers to investigate perceptions of unsafe road use, penalties for traffic violations, and improvements for the current system. Overall, the findings suggest awareness among drivers of many of the key risk factors. A perceived lack of clarity in how penalties are determined was identified and drivers in-dicated a desire to know how revenue from traffic fines is used. Several suggestions for improving the current system included school/community education about road risks and traffic law. The rise of private car ownership in China may contribute to a more harmonious personal life, but at the same time, may contribute to a decrease in societal harmony. A major challenge for authorities in any country is to promote the idea of a collective responsibility for road safety (traffic harmony), especially to those who perceive that traffic rules do not apply to them. This is a potentially greater challenge for China as it strives to balance harmony on the road and harmony in the broader society.
Resumo:
The deployment of new emerging technologies, such as cooperative systems, allows the traffic community to foresee relevant improvements in terms of traffic safety and efficiency. Vehicles are able to communicate on the local traffic state in real time, which could result in an automatic and therefore better reaction to the mechanism of traffic jam formation. An upstream single hop radio broadcast network can improve the perception of each cooperative driver within radio range and hence the traffic stability. The impact of a cooperative law on traffic congestion appearance is investigated, analytically and through simulation. Ngsim field data is used to calibrate the Optimal Velocity with Relative Velocity (OVRV) car following model and the MOBIL lane-changing model is implemented. Assuming that congestion can be triggered either by a perturbation in the instability domain or by a critical lane changing behavior, the calibrated car following behavior is used to assess the impact of a microscopic cooperative law on abnormal lane changing behavior. The cooperative law helps reduce and delay traffic congestion as it increases traffic flow stability.
Resumo:
For the evaluation, design, and planning of traffic facilities and measures, traffic simulation packages are the de facto tools for consultants, policy makers, and researchers. However, the available commercial simulation packages do not always offer the desired work flow and flexibility for academic research. In many cases, researchers resort to designing and building their own dedicated models, without an intrinsic incentive (or the practical means) to make the results available in the public domain. To make matters worse, a substantial part of these efforts pertains to rebuilding basic functionality and, in many respects, reinventing the wheel. This problem not only affects the research community but adversely affects the entire traffic simulation community and frustrates the development of traffic simulation in general. For this problem to be addressed, this paper describes an open source approach, OpenTraffic, which is being developed as a collaborative effort between the Queensland University of Technology, Australia; the National Institute of Informatics, Tokyo; and the Technical University of Delft, the Netherlands. The OpenTraffic simulation framework enables academies from geographic areas and disciplines within the traffic domain to work together and contribute to a specific topic of interest, ranging from travel choice behavior to car following, and from response to intelligent transportation systems to activity planning. The modular approach enables users of the software to focus on their area of interest, whereas other functional modules can be regarded as black boxes. Specific attention is paid to a standardization of data inputs and outputs for traffic simulations. Such standardization will allow the sharing of data with many existing commercial simulation packages.