122 resultados para Limonite.


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modal analysis of middle Miocene to Pleistocene volcaniclastic sands and sandstones recovered from Sites 1108, 1109, 1118, 1112, 1115, 1116, and 1114 within the Woodlark Basin during Leg 180 of the Ocean Drilling Program indicates a complex source history for sand-sized detritus deposited within the basin. Volcaniclastic detritus (i.e., feldspar, ferromagnesian minerals, and volcanic rock fragments) varies substantially throughout the Woodlark Basin. Miocene sandstones of the inferred Trobriand forearc succession contain mafic and subordinate silicic volcanic grains, probably derived from the contemporary Trobriand arc. During the late Miocene, the Trobriand outerarc/forearc (including Paleogene ophiolitic rocks) was subaerially exposed and eroded, yielding sandstones of dominantly mafic composition. Rift-related extension during the late Miocene-late Pliocene led to a transition from terrestrial to neritic and finally bathyal deposition. The sandstones deposited during this period are composed dominantly of silicic volcanic detritus, probably derived from the Amphlett Islands and surrounding areas where volcanic rocks of Pliocene-Pleistocene age occur. During this time terrigenous and metamorphic detritus derived from the Papua New Guinea mainland reached the single turbiditic Woodlark rift basin (or several subbasins) as fine-grained sediments. At Sites 1108, 1109, 1118, 1116, and 1114, serpentinite and metamorphic grains (schist and gneiss) appear as detritus in sandstones younger than ~3 Ma. This is thought to reflect a major pulse of rifting that resulted in the deepening of the Woodlark rift basin and the prevention of terrigenous and metamorphic detritus from reaching the northern rift margin (Site 1115). The Paleogene Papuan ophiolite belt and the Owen Stanley metamorphics were unroofed as the southern margin of the rift was exhumed (e.g., Moresby Seamount) and, in places, subaerially exposed (e.g., D'Entrecasteaux Islands and onshore Cape Vogel Basin), resulting in new and more proximal sources of metamorphic, igneous, and ophiolitic detritus. Continued emergence of the Moresby Seamount during the late Pliocene-early Pleistocene bounded by a major inclined fault scarp yielded talus deposits of similar composition to the above sandstones. Upper Pliocene-Pleistocene sandstones were deposited at bathyal depths by turbidity currents and as subordinate air-fall ash. Silicic glassy (high-K calc-alkaline) volcanic fragments, probably derived from volcanic centers located in Dawson and Moresby Straits, dominated these sandstones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A facies-genetic and stratigraphic subdivision of the Quaternary sequence in the Shapkina River valley has been accomplished. The riverbank shows outcrops of three glacial complexes with different mineralogical-petrographic compositions and structural characteristics, which can be correlated and stratificated. Datings of intermoraine horizons (alluvial, marine, lacustrine, and lacustrine-boggy sediments) have been based on palynological and paleomicrotheriological data. The Middle Neopleistocene section can be divided into two till horizons corresponding to two autonomous glaciations (Pechora and Vychegda). They are separated by a member of subaqueous Rodionov sediments. The Pechora till formed in the course of glacier motions from the northeast. Glacial horizons are mainly composed of the Vychegda till transported from the Northwest terrigenous provenance. Lithology of the Upper Neopleistocene Polyarnyi till testifies to its formation in the upper course of the river from material transported from the Northeast terrigenous-mineralogical provenance in the upper course of the river and from the Fennoscandian glaciation center in the lower course of the river. The paper presents the first lithological investigation and substantiation of genesis of various facies of Neopleistocene intermoraine marine sediments (sediments of the beach and fore-beach zones and shallow-water shelf).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"Verzeichniss der wichtigeren benutzten werke": pref. p. [7]-8.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study aims the characterization of thermally affected carbonate rocks from Jandaíra Formation in contact with Paleogene and Neogene basic intrusions in the region of the Pedro Avelino and Jandaíra municipalities (RN), northeastern Brazil. For this study, field, petrographic, x-ray diffraction, electron microprobe, and whole rock litogeochemistry data of carbonates were undertaken. The thermally unaffected limestones are classified like wackstones, grainstones and packstones. They may constitute carbonates grains of benthic foraminifera, echinoderm spines, ostracods, algae, corals, bivalves, gastropods, peloids and intraclasts. The porosities are classified like vug, intraparticle, interparticle, intercrystal and moldic types. The major minerals are calcite, ankerite and dolomite; the detrital are montmorillonite, pyrite, limonite, quartz and microcline. The thermally affected limestones are very coarse to very fine-grained and light to dark gray color. The fossiliferous components totally disappear, and the porosity tends to disappear. With the data obtained, it can be inferred that the carbonate protoliths would be calciferous to dolomitic limestones, both with small amount of clay minerals. Crystalline carbonates from dolomitic protolith have rhombohedral calcite and iron oxides / hydroxides, making the rocks much darker. The carbonates from calciferous protolith have a wide variation of grain size according to the recrystallization degree, increasing toward contact with the basic bodies. In this group, it was identified the minerals lizardite and spinel in weakly to moderately affected samples, and spinel and spurrite in strongly affected rocks, as well as calcite, that occur everywhere. The geological context (shallow level diabase intrusions), the crystallization of the pyrometamorphic minerals spurrite and olivine, and comparison with diagrams from the literature allow estimating temperatures and pressures around 1050-1200 °C and 0.5-1.0 kbar, respectively, for PTOTAL=PCO2. The post-intrusion cooling would have afforded the releasing of metasomatic / hydrothermal fluids, allowing the opening of the metamorphic system, with possible contribution of chemical elements from host units (sandstones, shales) and from basic intrusions. This would induce hydration of previous phases, allowing the formation of serpentine, chlorite and brucite. The results discussed here reveal the strong influence of the heat from basic intrusions within the sedimentary pile. Whereas in the offshore portion of the basin occur sills with up to 1000 m thickness, the understanding of pyrometamorphism might be useful for understanding and measuring the thermally affected rocks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study aims the characterization of thermally affected carbonate rocks from Jandaíra Formation in contact with Paleogene and Neogene basic intrusions in the region of the Pedro Avelino and Jandaíra municipalities (RN), northeastern Brazil. For this study, field, petrographic, x-ray diffraction, electron microprobe, and whole rock litogeochemistry data of carbonates were undertaken. The thermally unaffected limestones are classified like wackstones, grainstones and packstones. They may constitute carbonates grains of benthic foraminifera, echinoderm spines, ostracods, algae, corals, bivalves, gastropods, peloids and intraclasts. The porosities are classified like vug, intraparticle, interparticle, intercrystal and moldic types. The major minerals are calcite, ankerite and dolomite; the detrital are montmorillonite, pyrite, limonite, quartz and microcline. The thermally affected limestones are very coarse to very fine-grained and light to dark gray color. The fossiliferous components totally disappear, and the porosity tends to disappear. With the data obtained, it can be inferred that the carbonate protoliths would be calciferous to dolomitic limestones, both with small amount of clay minerals. Crystalline carbonates from dolomitic protolith have rhombohedral calcite and iron oxides / hydroxides, making the rocks much darker. The carbonates from calciferous protolith have a wide variation of grain size according to the recrystallization degree, increasing toward contact with the basic bodies. In this group, it was identified the minerals lizardite and spinel in weakly to moderately affected samples, and spinel and spurrite in strongly affected rocks, as well as calcite, that occur everywhere. The geological context (shallow level diabase intrusions), the crystallization of the pyrometamorphic minerals spurrite and olivine, and comparison with diagrams from the literature allow estimating temperatures and pressures around 1050-1200 °C and 0.5-1.0 kbar, respectively, for PTOTAL=PCO2. The post-intrusion cooling would have afforded the releasing of metasomatic / hydrothermal fluids, allowing the opening of the metamorphic system, with possible contribution of chemical elements from host units (sandstones, shales) and from basic intrusions. This would induce hydration of previous phases, allowing the formation of serpentine, chlorite and brucite. The results discussed here reveal the strong influence of the heat from basic intrusions within the sedimentary pile. Whereas in the offshore portion of the basin occur sills with up to 1000 m thickness, the understanding of pyrometamorphism might be useful for understanding and measuring the thermally affected rocks.