918 resultados para Life Cycle Assessment (LCA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il presente studio riporta i risultati emersi dal Life Cycle Assessment (LCA) del Corkwall, un prodotto da costruzione utilizzato in edilizia come coibentante termico ed acustico, riempitivo di crepe ed in grado di conferire resistenza al fuoco e impermeabilità alle facciate degli edifici. Il Corkwall è un'emulsione ottenuta dall’unione di sughero granulato e resine acriliche - prodotto dall’azienda Portoghese Amorim S.A. - commercializzato in tutto il mondo. Si sono presi in considerazione gli impatti derivanti dall’intero ciclo produttivo: dall’acquisizione delle materie prime fino al confezionamento del prodotto finito. I risultati di questo studio dimostrano che la fase di produzione del Corkwall è quella di gran lunga più impattante rispetto a tutte le categorie di impatto analizzate. Ciò è dovuto principalmente alla produzione delle resine acriliche. L’utilizzo di resine naturali migliorerebbe le prestazioni ambientali ma peggiorerebbe la qualità e la funzionalità del prodotto. Per migliorare le prestazioni ambientali del ciclo produttivo sarebbe opportuno sostituire interamente i trasporti in gomma con trasporti su rotaia. Ciò apporterebbe un miglioramento variabile dal 34% sull’eutrofizzazione, al 77% sull’assottigliamento dello strato di ozono stratosferico. Infine è stata effettuata una valutazione comparativa tra il Corkwall e un pannello di sughero (Corkpan) aventi stessa funzione di coibentazione termica. I risultati mostrano che la produzione del Corkpan comporta degli impatti ambientali migliori, che variano dal 48% sulla riduzione dello strato di ozono, al 100% sul riscaldamento globale, ad esclusione della categoria di acidificazione in cui il Corkpan è peggiore del 2%. Il Corkpan risulta essere più vantaggioso anche perché, a differenza del Corkwall, esso è recuperabile e riutilizzabile. Il vantaggio che offre il Corkwall è che può essere impiegato sulle facciate esterne ed aderendo al substrato funge da riempitivo di crepe e fessure apportando anche un miglioramento estetico agli edifici.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lo scopo di questo studio è quello di valutare come sono variati gli impatti dell’impianto di compostaggio Romagna Compost a seguito dell’intervento di ampliamento e adeguamento, che ha portato ad un’evoluzione impiantistica notevole: dal processo di compostaggio tradizionale ad un sistema integrato anaerobico-aerobico. Per fare ciò si è scelto di utilizzare la metodologia di valutazione del ciclo di vita Life Cycle Assessment (LCA). Il vantaggio di questa analisi, è quello di riuscire a considerare tutti gli aspetti del ciclo di vita dei diversi sotto-processi considerati, dal compostaggio vero e proprio, all’utilizzo di reagenti, combustibili e materiali ausiliari, dal trasporto e smaltimento dei flussi di rifiuti finali al recupero energetico. A tal proposito si è rivelata utile una ricerca bibliografica per individuare studi LCA applicati al campo d’interesse.Inoltre, è stato effettuato un riesame delle tecnologie utilizzate negli impianti di recupero dei rifiuti organici e del concetto di Best Available Techniques (BAT). Mediante l’analisi di inventario, è stato studiato in maniera approfondita l’impianto e le attività svolte al suo interno. Per quanto riguarda la valutazione degli impatti, eseguita con il metodo Recipe 2014, è stato preso in esame il periodo temporale dal 2007 al 2013, esaminando tutti gli anni di funzionamento. Nello specifico, ci si è posto l’obiettivo di valutare se e quanto l’introduzione del sistema di recupero energetico abbia portato ad un reale miglioramento del processo con una diminuzione complessiva degli impatti. Nella seconda fase dello studio, sono stati estesi i confini del sistema per valutare gli impatti associati al trasporto del rifiuto dal luogo di raccolta all’impianto Romagna Compost e alla diversa gestione dei rifiuti nell’ambito nazionale. La modellazione è stata effettuata con il programma di calcolo SimaPro e il database Ecoinvent, Infine, per convalidare i dati ottenuti è stato effettuata un’analisi di incertezza mediante il metodo Monte Carlo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Renewable hydrocarbon biofuels are being investigated as possible alternatives to conventional liquid transportation fossil fuels like gasoline, kerosene (aviation fuel), and diesel. A diverse range of biomass feedstocks such as corn stover, sugarcane bagasse, switchgrass, waste wood, and algae, are being evaluated as candidates for pyrolysis and catalytic upgrading to produce drop-in hydrocarbon fuels. This research has developed preliminary life cycle assessments (LCA) for each feedstock-specific pathway and compared the greenhouse gas (GHG) emissions of the hydrocarbon biofuels to current fossil fuels. As a comprehensive study, this analysis attempts to account for all of the GHG emissions associated with each feedstock pathway through the entire life cycle. Emissions from all stages including feedstock production, land use change, pyrolysis, stabilizing the pyrolysis oil for transport and storage, and upgrading the stabilized pyrolysis oil to a hydrocarbon fuel are included. In addition to GHG emissions, the energy requirements and water use have been evaluated over the entire life cycle. The goal of this research is to help understand the relative advantages and disadvantages of the feedstocks and the resultant hydrocarbon biofuels based on three environmental indicators; GHG emissions, energy demand, and water utilization. Results indicate that liquid hydrocarbon biofuels produced through this pyrolysis-based pathway can achieve greenhouse gas emission savings of greater than 50% compared to petroleum fuels, thus potentially qualifying these biofuels under the US EPA RFS2 program. GHG emissions from biofuels ranged from 10.7-74.3 g/MJ from biofuels derived from sugarcane bagasse and wild algae at the extremes of this range, respectively. The cumulative energy demand (CED) shows that energy in every biofuel process is primarily from renewable biomass and the remaining energy demand is mostly from fossil fuels. The CED for biofuel range from 1.25-3.25 MJ/MJ from biofuels derived from sugarcane bagasse to wild algae respectively, while the other feedstock-derived biofuels are around 2 MJ/MJ. Water utilization is primarily from cooling water use during the pyrolysis stage if irrigation is not used during the feedstock production stage. Water use ranges from 1.7 - 17.2 gallons of water per kg of biofuel from sugarcane bagasse to open pond algae, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is composed of three life-cycle analysis (LCA) studies of manufacturing to determine cumulative energy demand (CED) and greenhouse gas emissions (GHG). The methods proposed could reduce the environmental impact by reducing the CED in three manufacturing processes. First, industrial symbiosis is proposed and a LCA is performed on both conventional 1 GW-scaled hydrogenated amorphous silicon (a-Si:H)-based single junction and a-Si:H/microcrystalline-Si:H tandem cell solar PV manufacturing plants and such plants coupled to silane recycling plants. Using a recycling process that results in a silane loss of only 17 versus 85 percent, this results in a CED savings of 81,700 GJ and 290,000 GJ per year for single and tandem junction plants, respectively. This recycling process reduces the cost of raw silane by 68 percent, or approximately $22.6 and $79 million per year for a single and tandem 1 GW PV production facility, respectively. The results show environmental benefits of silane recycling centered around a-Si:H-based PV manufacturing plants. Second, an open-source self-replicating rapid prototype or 3-D printer, the RepRap, has the potential to reduce the environmental impact of manufacturing of polymer-based products, using distributed manufacturing paradigm, which is further minimized by the use of PV and improvements in PV manufacturing. Using 3-D printers for manufacturing provides the ability to ultra-customize products and to change fill composition, which increases material efficiency. An LCA was performed on three polymer-based products to determine the CED and GHG from conventional large-scale production and are compared to experimental measurements on a RepRap producing identical products with ABS and PLA. The results of this LCA study indicate that the CED of manufacturing polymer products can possibly be reduced using distributed manufacturing with existing 3-D printers under 89% fill and reduced even further with a solar photovoltaic system. The results indicate that the ability of RepRaps to vary fill has the potential to diminish environmental impact on many products. Third, one additional way to improve the environmental performance of this distributed manufacturing system is to create the polymer filament feedstock for 3-D printers using post-consumer plastic bottles. An LCA was performed on the recycling of high density polyethylene (HDPE) using the RecycleBot. The results of the LCA showed that distributed recycling has a lower CED than the best-case scenario used for centralized recycling. If this process is applied to the HDPE currently recycled in the U.S., more than 100 million MJ of energy could be conserved per annum along with significant reductions in GHG. This presents a novel path to a future of distributed manufacturing suited for both the developed and developing world with reduced environmental impact. From improving manufacturing in the photovoltaic industry with the use of recycling to recycling and manufacturing plastic products within our own homes, each step reduces the impact on the environment. The three coupled projects presented here show a clear potential to reduce the environmental impact of manufacturing and other processes by implementing complimenting systems, which have environmental benefits of their own in order to achieve a compounding effect of reduced CED and GHG.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concentrating Solar Power (CSP) plants typically incorporate one or various auxiliary boilers operating in parallel to the solar field to facilitate start up operations, provide system stability, avoid freezing of heat transfer fluid (HTF) and increase generation capacity. The environmental performance of these plants is highly influenced by the energy input and the type of auxiliary fuel, which in most cases is natural gas (NG). Replacing the NG with biogas or biomethane (BM) in commercial CSP installations is being considered as a means to produce electricity that is fully renewable and free from fossil inputs. Despite their renewable nature, the use of these biofuels also generates environmental impacts that need to be adequately identified and quantified. This paper investigates the environmental performance of a commercial wet-cooled parabolic trough 50 MWe CSP plant in Spain operating according to two strategies: solar-only, with minimum technically viable energy non-solar contribution; and hybrid operation, where 12 % of the electricity derives from auxiliary fuels (as permitted by Spanish legislation). The analysis was based on standard Life Cycle Assessment (LCA) methodology (ISO 14040-14040). The technical viability and the environmental profile of operating the CSP plant with different auxiliary fuels was evaluated, including: NG; biogas from an adjacent plant; and BM withdrawn from the gas network. The effect of using different substrates (biowaste, sewage sludge, grass and a mix of biowaste with animal manure) for the production of the biofuels was also investigated. The results showed that NG is responsible for most of the environmental damage associated with the operation of the plant in hybrid mode. Replacing NG with biogas resulted in a significant improvement of the environmental performance of the installation, primarily due to reduced impact in the following categories: natural land transformation, depletion of fossil resources, and climate change. However, despite the renewable nature of the biofuels, other environmental categories like human toxicity, eutrophication, acidification and marine ecotoxicity scored higher when using biogas and BM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The building sector is well known to be one of the key energy consumers worldwide. The renovation of existing buildings provides excellent opportunities for an effective reduction of energy consumption and greenhouse gas emissions but it is essential to identify the optimal strategies. In this paper a multi-criteria methodology is proposed for the comparative analysis of retrofitting solutions. Life Cycle Assessment (LCA) and Life Cycle Cost (LCC) are combined by expressing environmental impacts in monetary values. A Pareto optimization is used to select the preferred strategies. The methodology is exemplified by a case study: the renovation of a representative housing block from the 1960s located in Madrid. Eight scenarios have been proposed, from the Business as Usual scenario (BAU), through Spanish Building Regulation requirements (for new buildings) up to the Passive House standard. Results show how current renovation strategies that are being applied in Madrid are far from being optimal solutions. The required additional investment, which is needed to obtain an overall performance improvement of the envelope compared with the common practice to date, is relatively low (8%) considering the obtained life cycle environmental and financial savings (43% and 45%, respectively).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The UK government aims at achieving 80% CO2 emission reduction by 2050 which requires collective efforts across all the UK industry sectors. In particular, the housing sector has a large potential to contribute to achieving the aim because the housing sector alone accounts for 27% of the total UK CO2 emission, and furthermore, 87% of the housing which is responsible for current 27% CO2 emission will still stand in 2050. Therefore, it is essential to improve energy efficiency of existing housing stock built with low energy efficiency standard. In order for this, a whole‐house needs to be refurbished in a sustainable way by considering the life time financial and environmental impacts of a refurbished house. However, the current refurbishment process seems to be challenging to generate a financially and environmentally affordable refurbishment solution due to the highly fragmented nature of refurbishment practice and a lack of knowledge and skills about whole‐house refurbishment in the construction industry. In order to generate an affordable refurbishment solution, diverse information regarding costs and environmental impacts of refurbishment measures and materials should be collected and integrated in right sequences throughout the refurbishment project life cycle among key project stakeholders. Consequently, various researchers increasingly study a way of utilizing Building Information Modelling (BIM) to tackle current problems in the construction industry because BIM can support construction professionals to manage construction projects in a collaborative manner by integrating diverse information, and to determine the best refurbishment solution among various alternatives by calculating the life cycle costs and lifetime CO2 performance of a refurbishment solution. Despite the capability of BIM, the BIM adoption rate is low with 25% in the housing sector and it has been rarely studied about a way of using BIM for housing refurbishment projects. Therefore, this research aims to develop a BIM framework to formulate a financially and environmentally affordable whole‐house refurbishment solution based on the Life Cycle Costing (LCC) and Life Cycle Assessment (LCA) methods simultaneously. In order to achieve the aim, a BIM feasibility study was conducted as a pilot study to examine whether BIM is suitable for housing refurbishment, and a BIM framework was developed based on the grounded theory because there was no precedent research. After the development of a BIM framework, this framework was examined by a hypothetical case study using BIM input data collected from questionnaire survey regarding homeowners’ preferences for housing refurbishment. Finally, validation of the BIM framework was conducted among academics and professionals by providing the BIM framework and a formulated refurbishment solution based on the LCC and LCA studies through the framework. As a result, BIM was identified as suitable for housing refurbishment as a management tool, and it is timely for developing the BIM framework. The BIM framework with seven project stages was developed to formulate an affordable refurbishment solution. Through the case study, the Building Regulation is identified as the most affordable energy efficiency standard which renders the best LCC and LCA results when it is applied for whole‐house refurbishment solution. In addition, the Fabric Energy Efficiency Standard (FEES) is recommended when customers are willing to adopt high energy standard, and the maximum 60% of CO2 emissions can be reduced through whole‐house fabric refurbishment with the FEES. Furthermore, limitations and challenges to fully utilize BIM framework for housing refurbishment were revealed such as a lack of BIM objects with proper cost and environmental information, limited interoperability between different BIM software and limited information of LCC and LCA datasets in BIM system. Finally, the BIM framework was validated as suitable for housing refurbishment projects, and reviewers commented that the framework can be more practical if a specific BIM library for housing refurbishment with proper LCC and LCA datasets is developed. This research is expected to provide a systematic way of formulating a refurbishment solution using BIM, and to become a basis for further research on BIM for the housing sector to resolve the current limitations and challenges. Future research should enhance the BIM framework by developing more detailed process map and develop BIM objects with proper LCC and LCA Information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The significant effects of the building industry on the natural environment are well documented and improving the environmental performance of buildings is an on-going challenge. This is particularly the case for projects with restrictive budgets and timelines and because many existing environmental assessment tools are designed to be used too late in the design process. The use of tools during the early design stages may assist in achieving greater improvements in a building’s environmental performance. However, user-friendly tools with the ability to comprehensively compare environmental information between various building assemblies and materials, which can be easily adopted during the early design stages of a project, are not readily available. This paper presents the progress to date in developing a tool which supports building designers in identifying and selecting preferred building assemblies with the aim of minimising a building’s life cycle energy demand. The tool is based on comprehensive energy performance data for a broad range of building assemblies across all Australian climate zones. Allowing for adjustments to a set of pre-defined and user-defined assemblies the designer is able to see how assemblies perform in relation to each other. This provides valuable information to support decision-making relating to minimising the life cycle energy demand of buildings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Manufacture, construction and use of buildings and building materials make a significant environmental impact internally (inside the building), locally (neighbourhood) and globally. Life cycle assessment (LCA) methodology is being applied for evaluating the environmental impact of building/or building materials. One of the major applications of LCA is to identify key issues of a product system from cradle to grave. Key issues identified in an LCA lead one to the right direction in assessing the environmental aspects of a product system and help to identify the areas for improvement of the environmental performance of a product as well. The purpose of this paper is to suggest two methods for identifying key issues using an integrated tool (LCADesign), which has been developed to provide a method of determining the best alternative for reducing environmental impacts from a building or building materials, and compare both methods in the case study. This paper assists the designers or marketers related to building or building materials in their decision making by giving information on activities or alternatives which are identified as key issues for environmental impacts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Road construction, maintenance and operation are activities that impact the environment by way of energy use, resource consumption and emission. Components such as construction material, transportation, street lighting, rolling resistance, traffic congestion during works, albedo and end-of-life processing impact the environment at different phases of the life of a road. With a view to promote sustainable development, a few sustainability rating schemes, e.g. Infrastructure Sustainability and Invest (Australia), Envision and Greenroads (USA), and CEEQUAL (UK) have been developed, that can assess road projects. These schemes address environmental areas such as: energy and emission, land, water, materials, discharges into surroundings, waste and ecology as factors for sustainable development. This paper assesses different rating schemes based on a defined comprehensive life cycle assessment (LCA) system boundary for road projects to identify different environmental indicators that address sustainable road development and operation. The findings indicate that new indicators are required to address different environmental components during the operation phase of roads.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The construction and operation of infrastructure assets can have significant impact on society and the region. Using a sustainability assessment framework can be an effective means to build sustainability aspects into the design, construction and operation of infrastructure assets. The conventional evaluation processes and procedures for infrastructure projects do not necessarily measure the qualitative/quantitative effectiveness of all aspects of sustainability: environment, social wellbeing and economy. As a result, a few infrastructure sustainability rating schemes have been developed with a view to assess the level of sustainability attained in the infrastructure projects. These include: Infrastructure Sustainability (Australia); CEEQUAL (UK); and Envision (USA). In addition, road sector specific sustainability rating schemes such as Greenroads (USA) and Invest (Australia) have also been developed. These schemes address several aspects of sustainability with varying emphasis (weightings) on areas such as: use of resources; emission, pollution and waste; ecology; people and place; management and governance; and innovation. The attainment of sustainability of an infrastructure project depends largely on addressing the whole-of-life environmental issues. This study has analysed the rating schemes’ coverage of different environmental components for the road infrastructure under the five phases of a project: material, construction, use, maintenance and end-of-life. This is based on a comprehensive life cycle assessment (LCA) system boundary. The findings indicate that there is a need for the schemes to consider key (high impact) life cycle environmental components such as traffic congestion during construction, rolling resistance due to surface roughness and structural stiffness of the pavement, albedo, lighting, and end-of-life management (recycling) to deliver sustainable road projects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the increasing recognition of global climate change, the building and construction industry is under pressure to reduce carbon emissions. A central issue in striving towards reduced carbon emissions is the need for a practicable and meaningful yardstick for assessing and communicating greenhouse gas (GHG) results. ISO 14067 was published by the International Organization for Standardization in May 2013. By providing specific requirements in the life cycle assessment (LCA) approach, the standard clarifies the GHG assessment in the aspects of choosing system boundaries and simulating use and end-of-life phases when quantifying carbon footprint of products (CFPs). More importantly, the standard, for the first time, provides step-to-step guidance and standardized template for communicating CFPs in the form of CFP external communication report, CFP performance tracking report, CFP declaration and CFP label. ISO 14067 therefore makes a valuable contribution to GHG quantification and transparent communication and comparison of CFPs. In addition, as cradle-to-grave should be used as the system boundary if use and end-of-life phases can be simulated, ISO 14067 will hopefully promote the development and implementation of simulation technologies, with Building Information Modelling (BIM) in particular, in the building and construction industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Textile waste is a significant contributor to landfill yet the majority of textiles can be recycled, allowing for the energy and fibre to be reclaimed. This chapter examines the open-loop and closed loop recycling of textile products with particular reference to the fashion and apparel context. It describes the fibres used within apparel, the current mechanical and chemical methods for textile recycling, LCA findings for each method, and applications within apparel for each. Barriers for more effective recycling include ease of integration into existing textile and apparel design methods as well as coordinated collection of post-consumer waste. The chapter concludes with a discussion of innovations that point to future trends in both open-loop and closed-loop recycling within the apparel industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fuel cell vehicles (FCVs) offer the potential of ultra-low emissions combined with high efficiency. Proton exchange membrane (PEM) fuel cells being developed for vehicles require hydrogen as a fuel. Due to the various pathways of hydrogen generation, both onboard and off-board, the question about which fuel option is the most competitive for fuel cell vehicles is of great current interest. In this paper, a life-cycle assessment (LCA) model was made to conduct a comprehensive study of the energy, environmental, and economic (3E) impacts of FCVs from well to wheel (WTW). In view of the special energy structure of China and the timeframe, 10 vehicle/fuel systems are chosen as the study projects. The results show that methanol is the most suitable fuel to serve as the ideal hydrogen source for fuel cell vehicles in the timeframe and geographic regions of this study. On the other hand, gasoline and pure hydrogen can also play a role in short-term and regional applications, especially for local demonstrations of FCV fleets. (c) 2004 Elsevier B.V All rights reserved.