951 resultados para Life Cycle Assessment (LCA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is composed of three life-cycle analysis (LCA) studies of manufacturing to determine cumulative energy demand (CED) and greenhouse gas emissions (GHG). The methods proposed could reduce the environmental impact by reducing the CED in three manufacturing processes. First, industrial symbiosis is proposed and a LCA is performed on both conventional 1 GW-scaled hydrogenated amorphous silicon (a-Si:H)-based single junction and a-Si:H/microcrystalline-Si:H tandem cell solar PV manufacturing plants and such plants coupled to silane recycling plants. Using a recycling process that results in a silane loss of only 17 versus 85 percent, this results in a CED savings of 81,700 GJ and 290,000 GJ per year for single and tandem junction plants, respectively. This recycling process reduces the cost of raw silane by 68 percent, or approximately $22.6 and $79 million per year for a single and tandem 1 GW PV production facility, respectively. The results show environmental benefits of silane recycling centered around a-Si:H-based PV manufacturing plants. Second, an open-source self-replicating rapid prototype or 3-D printer, the RepRap, has the potential to reduce the environmental impact of manufacturing of polymer-based products, using distributed manufacturing paradigm, which is further minimized by the use of PV and improvements in PV manufacturing. Using 3-D printers for manufacturing provides the ability to ultra-customize products and to change fill composition, which increases material efficiency. An LCA was performed on three polymer-based products to determine the CED and GHG from conventional large-scale production and are compared to experimental measurements on a RepRap producing identical products with ABS and PLA. The results of this LCA study indicate that the CED of manufacturing polymer products can possibly be reduced using distributed manufacturing with existing 3-D printers under 89% fill and reduced even further with a solar photovoltaic system. The results indicate that the ability of RepRaps to vary fill has the potential to diminish environmental impact on many products. Third, one additional way to improve the environmental performance of this distributed manufacturing system is to create the polymer filament feedstock for 3-D printers using post-consumer plastic bottles. An LCA was performed on the recycling of high density polyethylene (HDPE) using the RecycleBot. The results of the LCA showed that distributed recycling has a lower CED than the best-case scenario used for centralized recycling. If this process is applied to the HDPE currently recycled in the U.S., more than 100 million MJ of energy could be conserved per annum along with significant reductions in GHG. This presents a novel path to a future of distributed manufacturing suited for both the developed and developing world with reduced environmental impact. From improving manufacturing in the photovoltaic industry with the use of recycling to recycling and manufacturing plastic products within our own homes, each step reduces the impact on the environment. The three coupled projects presented here show a clear potential to reduce the environmental impact of manufacturing and other processes by implementing complimenting systems, which have environmental benefits of their own in order to achieve a compounding effect of reduced CED and GHG.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concentrating Solar Power (CSP) plants typically incorporate one or various auxiliary boilers operating in parallel to the solar field to facilitate start up operations, provide system stability, avoid freezing of heat transfer fluid (HTF) and increase generation capacity. The environmental performance of these plants is highly influenced by the energy input and the type of auxiliary fuel, which in most cases is natural gas (NG). Replacing the NG with biogas or biomethane (BM) in commercial CSP installations is being considered as a means to produce electricity that is fully renewable and free from fossil inputs. Despite their renewable nature, the use of these biofuels also generates environmental impacts that need to be adequately identified and quantified. This paper investigates the environmental performance of a commercial wet-cooled parabolic trough 50 MWe CSP plant in Spain operating according to two strategies: solar-only, with minimum technically viable energy non-solar contribution; and hybrid operation, where 12 % of the electricity derives from auxiliary fuels (as permitted by Spanish legislation). The analysis was based on standard Life Cycle Assessment (LCA) methodology (ISO 14040-14040). The technical viability and the environmental profile of operating the CSP plant with different auxiliary fuels was evaluated, including: NG; biogas from an adjacent plant; and BM withdrawn from the gas network. The effect of using different substrates (biowaste, sewage sludge, grass and a mix of biowaste with animal manure) for the production of the biofuels was also investigated. The results showed that NG is responsible for most of the environmental damage associated with the operation of the plant in hybrid mode. Replacing NG with biogas resulted in a significant improvement of the environmental performance of the installation, primarily due to reduced impact in the following categories: natural land transformation, depletion of fossil resources, and climate change. However, despite the renewable nature of the biofuels, other environmental categories like human toxicity, eutrophication, acidification and marine ecotoxicity scored higher when using biogas and BM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The building sector is well known to be one of the key energy consumers worldwide. The renovation of existing buildings provides excellent opportunities for an effective reduction of energy consumption and greenhouse gas emissions but it is essential to identify the optimal strategies. In this paper a multi-criteria methodology is proposed for the comparative analysis of retrofitting solutions. Life Cycle Assessment (LCA) and Life Cycle Cost (LCC) are combined by expressing environmental impacts in monetary values. A Pareto optimization is used to select the preferred strategies. The methodology is exemplified by a case study: the renovation of a representative housing block from the 1960s located in Madrid. Eight scenarios have been proposed, from the Business as Usual scenario (BAU), through Spanish Building Regulation requirements (for new buildings) up to the Passive House standard. Results show how current renovation strategies that are being applied in Madrid are far from being optimal solutions. The required additional investment, which is needed to obtain an overall performance improvement of the envelope compared with the common practice to date, is relatively low (8%) considering the obtained life cycle environmental and financial savings (43% and 45%, respectively).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The UK government aims at achieving 80% CO2 emission reduction by 2050 which requires collective efforts across all the UK industry sectors. In particular, the housing sector has a large potential to contribute to achieving the aim because the housing sector alone accounts for 27% of the total UK CO2 emission, and furthermore, 87% of the housing which is responsible for current 27% CO2 emission will still stand in 2050. Therefore, it is essential to improve energy efficiency of existing housing stock built with low energy efficiency standard. In order for this, a whole‐house needs to be refurbished in a sustainable way by considering the life time financial and environmental impacts of a refurbished house. However, the current refurbishment process seems to be challenging to generate a financially and environmentally affordable refurbishment solution due to the highly fragmented nature of refurbishment practice and a lack of knowledge and skills about whole‐house refurbishment in the construction industry. In order to generate an affordable refurbishment solution, diverse information regarding costs and environmental impacts of refurbishment measures and materials should be collected and integrated in right sequences throughout the refurbishment project life cycle among key project stakeholders. Consequently, various researchers increasingly study a way of utilizing Building Information Modelling (BIM) to tackle current problems in the construction industry because BIM can support construction professionals to manage construction projects in a collaborative manner by integrating diverse information, and to determine the best refurbishment solution among various alternatives by calculating the life cycle costs and lifetime CO2 performance of a refurbishment solution. Despite the capability of BIM, the BIM adoption rate is low with 25% in the housing sector and it has been rarely studied about a way of using BIM for housing refurbishment projects. Therefore, this research aims to develop a BIM framework to formulate a financially and environmentally affordable whole‐house refurbishment solution based on the Life Cycle Costing (LCC) and Life Cycle Assessment (LCA) methods simultaneously. In order to achieve the aim, a BIM feasibility study was conducted as a pilot study to examine whether BIM is suitable for housing refurbishment, and a BIM framework was developed based on the grounded theory because there was no precedent research. After the development of a BIM framework, this framework was examined by a hypothetical case study using BIM input data collected from questionnaire survey regarding homeowners’ preferences for housing refurbishment. Finally, validation of the BIM framework was conducted among academics and professionals by providing the BIM framework and a formulated refurbishment solution based on the LCC and LCA studies through the framework. As a result, BIM was identified as suitable for housing refurbishment as a management tool, and it is timely for developing the BIM framework. The BIM framework with seven project stages was developed to formulate an affordable refurbishment solution. Through the case study, the Building Regulation is identified as the most affordable energy efficiency standard which renders the best LCC and LCA results when it is applied for whole‐house refurbishment solution. In addition, the Fabric Energy Efficiency Standard (FEES) is recommended when customers are willing to adopt high energy standard, and the maximum 60% of CO2 emissions can be reduced through whole‐house fabric refurbishment with the FEES. Furthermore, limitations and challenges to fully utilize BIM framework for housing refurbishment were revealed such as a lack of BIM objects with proper cost and environmental information, limited interoperability between different BIM software and limited information of LCC and LCA datasets in BIM system. Finally, the BIM framework was validated as suitable for housing refurbishment projects, and reviewers commented that the framework can be more practical if a specific BIM library for housing refurbishment with proper LCC and LCA datasets is developed. This research is expected to provide a systematic way of formulating a refurbishment solution using BIM, and to become a basis for further research on BIM for the housing sector to resolve the current limitations and challenges. Future research should enhance the BIM framework by developing more detailed process map and develop BIM objects with proper LCC and LCA Information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This PhD work arises from the necessity to give a contribution to the energy saving field, regarding automotive applications. The aim was to produce a multidisciplinary work to show how much important is to consider different aspects of an electric car realization: from innovative materials to cutting-edge battery thermal management systems (BTMSs), also dealing with the life cycle assessment (LCA) of the battery packs (BPs). Regarding the materials, it has been chosen to focus on carbon fiber composites as their use allows realizing light products with great mechanical properties. Processes and methods to produce carbon fiber goods have been analysed with a special attention on the university solar car Emilia 4. The work proceeds dealing with the common BTMSs on the market (air-cooled, cooling plates, heat pipes) and then it deepens some of the most innovative systems such as the PCM-based BTMSs after a previous experimental campaign to characterize the PCMs. After that, a complex experimental campaign regarding the PCM-based BTMSs has been carried on, considering both uninsulated and insulated systems. About the first category the tested systems have been pure PCM-based and copper-foam-loaded-PCM-based BTMSs; the insulated tested systems have been pure PCM-based and copper-foam-loaded-PCM-based BTMSs and both of these systems equipped with a liquid cooling circuit. The choice of lighter building materials and the optimization of the BTMS are strategies which helps in reducing the energy consumption, considering both the energy required by the car to move and the BP state of health (SOH). Focusing on this last factor, a clear explanation regarding the importance of taking care about the SOH is given by the analysis of a BP production energy consumption. This is why a final dissertation about the life cycle assessment (LCA) of a BP unit has been presented in this thesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A partire dagli anni ’70, il modello di sviluppo legato alla crescita economica ha cominciato ad essere messo in discussione ed è iniziato ad emergere un nuovo modello basato sulla sostenibilità, nel quale lo sviluppo non è solo economico, ma anche sociale ed ambientale, e che tiene conto non solo dei bisogni attuali ma anche di quelli futuri. Al fine di analizzare in maniera scientifica queste problematiche, nel corso dei decenni successivi sono state create delle metodologie utili a quantificare l’impatto ambientale legato al ciclo di vita dei prodotti, in modo tale da individuare dei miglioramenti da implementare nelle fasi critiche individuate. Una delle metodologie più diffuse è quella del Life Cycle Assessment (LCA), la quale quantifica i flussi di materia ed energia appartenenti ad un ciclo di vita di un prodotto e ne valuta gli impatti ambientali. L’obiettivo dell’analisi LCA elaborata in questa tesi è valutare lo scenario as-is di produzione delle cassette a sponde abbattibili utilizzate nella filiera dell’ortofrutta di CPR System, ma anche valutare scenari alternativi ad esso ed identificare possibilità di migliorare il modo in cui vengono prodotte le cassette, in modo da facilitare il raggiungimento di specifici obiettivi di performance ambientali, sempre più necessari nell’attuale panorama industriale. Partendo dalla progettazione di un database e dalla raccolta dati del sistema aziendale analizzato, l’elaborato descrive la modellizzazione del ciclo di vita attraverso il software SimaPro e delle fasi eseguite per individuare le criticità principali e valutare scenari alternativi per ridurre l’impatto delle cassette a sponde abbattibili prodotte.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de natureza científica para obtenção do grau de mestre em Engenharia Civil

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química e Biológica

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O desenvolvimento sustentável é um dos grandes desafios dos nossos tempos com inúmeras consequências em várias áreas da nossa sociedade. É uma questão abrangente e essencial para a sobrevivência do modo de vida tal como o conhecemos actualmente. A construção sustentável tem um papel muito importante no desenvolvimento, não só ao nível económico mas também social e cultural. Embora não contemple a energia incorporada, a avaliação do ciclo de vida (ACV), no sector da construção, é um dos métodos mais comuns para avaliar o nível de sustentabilidade. Este trabalho visa os metais como uma das mais promissoras e actuais respostas do sector da construção às crescentes preocupações em relação ao desenvolvimento sustentável. O ferro e derivados são normalmente a base das construções metálicas, residindo no seu potencial de reutilização e reciclagem um dos seus principais factores de sustentabilidade. As estruturas metálicas apresentam características especificas que se coadunam com os requisitos da construção sustentável e que tornam este tipo de construção extremamente versátil e interessante. Neste trabalho, é efectuada uma abordagem sobre a construção metálica ao longo de três partes. A primeira parte é constituída por uma introdução histórica ao ferro e seus derivados enunciando exemplos de construções até aos nossos dias, e pela classificação dos vários tipos de metais e ligas metálicas. Na segunda parte, é abordado o conceito de sustentável e o seu enquadramento no sector da construção, e é feita uma introdução à metodologia de avaliação de ciclo de vida. Na terceira parte, é abordado um exemplo prático de uma estrutura metálica em que são elaboradas e comparadas três soluções. Na origem da diversidade dos elementos comparativos estão o tipo de aço, a origem da energia utilizada no seu fabrico e o tipo de solução técnica adoptada. O objectivo deste trabalho é compreender as repercussões do conceito de sustentabilidade no sector da construção, e desenvolver um método simplificado de avaliação dos impactos ambientais e económicos de soluções metálicas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis submitted to the Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia for the degree of Doctor of Philosophy in Environmental Engineering

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Civil, Perfil de Construçã

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RESUMO: O girassol é uma importante cultura na região de Parecis, no Cerrado brasileiro. Em 2014, a região respondeu pela produção de 232.700 t de grãos, 45% da produção nacional. A produção de girassol provém principalmente de um sistema que tem a soja como cultura principal. A associação entre soja e girassol pode reduzir impactos ambientais devido ao uso compartilhado de recursos. Este estudo desenvolveu uma Avaliação de Ciclo de Vida (ACV) ?do berço ao túmulo? do sistema de produção soja-girassol usado na região de Parecis e comparou seu perfil ambiental ao das monoculturas de soja e girassol. Impactos relacionados ao uso do solo (emissões da mudança de uso da terra e calagem) por cada cultura foram alocados em função do tempo de ocupação do solo. O sistema soja-girassol teve impactos ambientais menores em todas as categorias de impacto quando comparado à monocultura de soja e girassol, com o mesmo rendimento. Reduções importantes foram observadas em ?Mudança do Clima?, ?Acidificação Terrestre? e ?Formação de Material Particulado?. ABSTRACT: Sunflower is an important crop in Parecis region of the Brazilian Cerrado. In 2014 the region accounted for the production of 232,700 tons of sunflower grain, 45% of national production. Sunflower production comes mostly from a system that has soybean as the main crop. The association of soybean and sunflower can reduce environmental impacts due to shared use of resources. This study performed a ?cradle to gate? Life Cycle Assessment (LCA) of the soybean-sunflower production system used in Parecis region and compared its environmental profile to that of the monoculture of these two crops. Impacts related to the use of soil (land use change emissions and liming) by each crop were evaluated according to time of soil occupation criterion. Soybean-sunflower system had lower environmental impacts on every impact category comparing to soybean and sunflower monoculture with the same yield. Important reduction were observed on ?Climate change?, ?Terrestrial acidification? and ?Particulate matter formation? categories.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work focuses on the use of the life cycle assessment (LCA) and life cycle costing (LCC)methodologies to evaluate environmental and economic impacts of polymers and polymer composites materials and products. Initially a literature review is performed in order to assess the scope and limitations of existing LCA and LCC studies on these topics. Then, a case study, based on the production of a water storage glass-fibre reinforced polymer (GFRP) composite storage tank, is presented. The storage tank was evaluated via a LCA/LCC integrated model, a novel way of analysing the life cycle (LC) environmental and economic performances of structural products. The overarching conclusion of the review is that the environmental and economic performances of polymers composites in non-mobile applications are seldom assessed and never in a combined integrated way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of thermal insulation materials for the achievement of energy efficient buildings intended, in most cases, the fulfilment of the required heating and cooling needs of the operational phase. The main goal of this paper is â by using exploratory methodology, namely literature review â identify more sustainable insulating materials and, concomitantly, exposing the paradoxical effect of other insulation materials with high Global Warming Potential (GWP) highlighting the role of the Life Cycle Assessment (LCA), Ecodesign and Environmental Product Declaration (EPD) tools for the framing, comparison and selection of materials. As a main conclusion, it is noticed the lack of environmental information from the producers which, together with acquisition prices that do not internalize Life Cycle Costs (LCC), has led to the use of insulation materials with high carbon footprint and to the "isolation paradox" as well.