951 resultados para Libraries and electronic publishing -- Congresses
Resumo:
Phase structure and stability of three typical mixed ionic and electronic conducting perovskite-type membranes, SrCo0.8Fe0.2O3-delta (SCF), Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF) and BaCo0.4Fe0.4Zr0.2O3-delta (BCFZ) were studied by in situ high temperature X-ray diffraction at temperatures from 303 to 1273 K and under different atmospheres (air, 2% O-2 in Ar and pure Ar) at 1173 K. By analyzing their lattice parameters the thermal expansion coefficients (TECs) of BSCF, SCF and BCZF are obtained to be 11.5 x 10(-6) K-1, 17.9 x 10(-6) K-1 and 10.3 x 10(-6) K-1, respectively. A relationship between phase stability and TEC was proposed: the higher is the TEC, the lower is the operation stability of the perovskite materials. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
The resolution passed by the BU University Council approving an initiative to establish an archive of the research and scholarship produced by the faculty of the University.
Resumo:
Surface modification of silicon with organic monolayers tethered to the surface by different linkers is an important process in realizing future (opto-)electronic devices. Understanding the role played by the nature of the linking group and the chain length on the adsorption structures and electronic properties of these assemblies is vital to advance this technology. This Thesis is a study of such properties and contributes in particular to a microscopic understanding of induced changes in the work function of experimentally studied functionalized silicon surfaces. Using first-principles density functional theory (DFT), at the first step, we provide predictions for chemical trends in the work function of hydrogenated silicon (111) surfaces modified with various terminations. For nonpolar terminating atomic species such as F, Cl, Br, and I, the change in the work function is directly proportional to the amount of charge transferred from the surface, thus relating to the difference in electronegativity of the adsorbate and silicon atoms. The change is a monotonic function of coverage in this case, and the work function increases with increasing electronegativity. Polar species such as −TeH, −SeH, −SH, −OH, −NH2, −CH3, and −BH2 do not follow this trend due to the interaction of their dipole with the induced electric field at the surface. In this case, the magnitude and sign of the surface dipole moment need to be considered in addition to the bond dipole to generally describe the change in work function. Compared to hydrogenated surfaces, there is slight increase in the work function of H:Si(111)-XH, where X = Te, Se, and S, whereas reduction is observed for surfaces covered with −OH, −CH3, and −NH2. Next, we study the hydrogen passivated Si(111) surface modified with alkyl chains of the general formula H:Si–(CH2)n–CH2 and H:Si–X–(CH2)n–CH3, where X = NH, O, S and n = (0, 1, 3, 5, 7, 9, 11), at half coverage. For (X)–Hexyl and (X)–Dodecyl functionalization, we also examined various coverages up to full monolayer grafting in order to validate the result of half covered surface and the linker effect on the coverage. We find that it is necessary to take into account the van der Waals interaction between the alkyl chains. The strongest binding is for the oxygen linker, followed by S, N, and C, irrespective of chain length. The result revealed that the sequence of the stability is independent of coverage; however, linkers other than carbon can shift the optimum coverage considerably and allow further packing density. For all linkers apart from sulfur, structural properties, in particular, surface-linker-chain angles, saturate to a single value once n > 3. For sulfur, we identify three regimes, namely, n = 0–3, n = 5–7, and n = 9–11, each with its own characteristic adsorption structures. Where possible, our computational results are shown to be consistent with the available experimental data and show how the fundamental structural properties of modified Si surfaces can be controlled by the choice of linking group and chain length. Later we continue by examining the work function tuning of H:Si(111) over a range of 1.73 eV through adsorption of alkyl monolayers with general formula -[Xhead-group]-(CnH2n)-[Xtail-group], X = O(H), S(H), NH(2). The work function is practically converged at 4 carbons (8 for oxygen), for head-group functionalization. For tail-group functionalization and with both head- and tail-groups, there is an odd-even effect in the behavior of the work function, with peak-to-peak amplitudes of up to 1.7 eV in the oscillations. This behavior is explained through the orientation of the terminal-group's dipole. The shift in the work function is largest for NH2-linked and smallest for SH-linked chains and is rationalized in terms of interface dipoles. Our study reveals that the choice of the head- and/or tail-groups effectively changes the impact of the alkyl chain length on the work function tuning using self-assembled monolayers and this is an important advance in utilizing hybrid functionalized Si surfaces. Bringing together the understanding gained from studying single type functionalization of H:Si(111) with different alkyl chains and bearing in mind how to utilize head-group, tail-group or both as well as monolayer coverage, in the final part of this Thesis we study functionalized H:Si(111) with binary SAMs. Aiming at enhancing work function adjustment together with SAM stability and coverage we choose a range of terminations and linker-chains denoted as –X–(Alkyl) with X = CH3, O(H), S(H), NH(2) and investigate the stability and work function of various binary components grafted onto H:Si(111) surface. Using binary functionalization with -[NH(2)/O(H)/S(H)]-[Hexyl/Dodecyl] we show that work function can be tuned within the interval of 3.65-4.94 eV and furthermore, enhance the SAM’s stability. Although direct Si-C grafted SAMs are less favourable compared to their counterparts with O, N or S linkage, regardless of the ratio, binary functionalized alkyl monolayers with X-alkyl (X = NH, O) is always more stable than single type alkyl functionalization with the same coverage. Our results indicate that it is possible to go beyond the optimum coverage of pure alkyl functionalized SAMs (50%) by adding a linker with the correct choice of the linker. This is very important since dense packed monolayers have fewer defects and deliver higher efficiency. Our results indicate that binary anchoring can modify the charge injection and therefore bond stability while preserving the interface electronic structure.
Resumo:
Heidegger famously identified Modernity with a technological leveling of being to a single order of a “standing reserve.” In a radically different tone, Gilles Deleuze articulated a single “plane of immanence” within which ontological distinctions between mind and body, God and world, interiority and exteriority become indiscernible. Taking such philosophical declarations as points of departure, this panel will consider how a collapse of ontological distinction emerged as a thematic and structural trope in literary and cinematic modernisms. We hope to consider how writers and film-makers of the 20th c. utilize the resources of their media to ask “the question of being” that troubled their philosophical contemporaries and heirs. In this vein, we will examine how these modernist ontologies of immanence describe the crisis of a subject saturated and eclipsed by a world which comprises her while also remaining strange or opaque. Papers will ask what is lost with the departure of a distinctly human sense of “being” and how the historical arrival of an alternative ontological order may be evident in the lived experience of modernity. In this sense, the relationship to departures and arrivals becomes the modern subject’s suspicion that he is unable to do either vis á vis the world.
Resumo:
We have carried out extensive density functional theory (DFT) calculations for possible redox states of the active center in Fe-only hydrogenases. The active center is modeled by [(H(CH(3))S)(CO)(CN(-))Fe(p)(mu-DTN)(mu-CO)Fe(d)(CO)(CN(-))(L)](z) (z is the net charge in the complex; Fe(p)= the proximal Fe, Fe(d) = the distal Fe, DTN = (-SCH(2)NHCH(2)S-), L is the ligand that bonds with the Fed at the trans position to the bridging CO). Structures of possible redox states are optimized, and CO stretching frequencies are calculated. By a detailed comparison of all the calculated structures and the vibrational frequencies with the available experimental data, we find that (i) the fully oxidized, inactive state is an Fe(II)-Fe(II) state with a hydroxyl (OH(-)) group bonded at the Fe(d), (ii) the oxidized, active state is an Fe(II)-Fe(l) complex which is consistent with the assignment of Cao and Hall (J. Am. Chem. Soc. 2001, 123, 3734), and (iii) the fully reduced state is a mixture with the major component being a protonated Fe(l)-Fe(l) complex and the other component being its self-arranged form, Fe(II)-Fe(II) hydride, Our calculations also show that the exogenous CO can strongly bond with the Fe(II)-Fe(l) species, but cannot bond with the Fe(l)-Fe(l) complex. This result is consistent with experiments that CO tends to inhibit the oxidized, active state, but not the fully reduced state. The electronic structures of all the redox states have been analyzed. It is found that a frontier orbital which is a mixing state between the e(g) of Fe and the 2pi of the bridging CO plays a key role concerning the reactivity of Fe-only hydrogenases: (1) it is unoccupied in the fully oxidized, inactive state, half-occupied in the oxidized, active state, and fully occupied in the fully reduced state; (ii) the e(g)-2pi orbital is a bonding state, and this is the key reason for stability of the low oxidation states, such as Fe(l)-Fe(l) complexes; and (iii) in the e(g)-2pi orbital more charge accumulates between the bridging CO and the Fe(d) than between the bridging CO and the Fe(p), and the occupation increase in this orbital will enhance the bonding between the bridging CO and the Fe(d), leading to the bridging-CO shift toward the Fe(d).
Resumo:
Background: Postal and electronic questionnaires are widely used for data collection in epidemiological studies but non-response reduces the effective sample size and can introduce bias. Finding ways to increase response to postal and electronic questionnaires would improve the quality of health research. Objectives: To identify effective strategies to increase response to postal and electronic questionnaires. Search strategy: We searched 14 electronic databases to February 2008 and manually searched the reference lists of relevant trials and reviews, and all issues of two journals. We contacted the authors of all trials or reviews to ask about unpublished trials. Where necessary, we also contacted authors to confirm methods of allocation used and to clarify results presented. We assessed the eligibility of each trial using pre-defined criteria. Selection criteria: Randomised controlled trials of methods to increase response to postal or electronic questionnaires. Data collection and analysis: We extracted data on the trial participants, the intervention, the number randomised to intervention and comparison groups and allocation concealment. For each strategy, we estimated pooled odds ratios (OR) and 95% confidence intervals (CI) in a random-effects model. We assessed evidence for selection bias using Egger's weighted regression method and Begg's rank correlation test and funnel plot. We assessed heterogeneity among trial odds ratios using a Chi 2 test and the degree of inconsistency between trial results was quantified using the I 2 statistic. Main results: Postal We found 481 eligible trials.The trials evaluated 110 different ways of increasing response to postal questionnaires.We found substantial heterogeneity among trial results in half of the strategies. The odds of response were at least doubled using monetary incentives (odds ratio 1.87; 95% CI 1.73 to 2.04; heterogeneity P < 0.00001, I 2 = 84%), recorded delivery (1.76; 95% CI 1.43 to 2.18; P = 0.0001, I 2 = 71%), a teaser on the envelope - e.g. a comment suggesting to participants that they may benefit if they open it (3.08; 95% CI 1.27 to 7.44) and a more interesting questionnaire topic (2.00; 95% CI 1.32 to 3.04; P = 0.06, I 2 = 80%). The odds of response were substantially higher with pre-notification (1.45; 95% CI 1.29 to 1.63; P < 0.00001, I 2 = 89%), follow-up contact (1.35; 95% CI 1.18 to 1.55; P < 0.00001, I 2 = 76%), unconditional incentives (1.61; 1.36 to 1.89; P < 0.00001, I 2 = 88%), shorter questionnaires (1.64; 95%CI 1.43 to 1.87; P < 0.00001, I 2 = 91%), providing a second copy of the questionnaire at follow up (1.46; 95% CI 1.13 to 1.90; P < 0.00001, I 2 = 82%), mentioning an obligation to respond (1.61; 95% CI 1.16 to 2.22; P = 0.98, I 2 = 0%) and university sponsorship (1.32; 95% CI 1.13 to 1.54; P < 0.00001, I 2 = 83%). The odds of response were also increased with non-monetary incentives (1.15; 95% CI 1.08 to 1.22; P < 0.00001, I 2 = 79%), personalised questionnaires (1.14; 95% CI 1.07 to 1.22; P < 0.00001, I 2 = 63%), use of hand-written addresses (1.25; 95% CI 1.08 to 1.45; P = 0.32, I 2 = 14%), use of stamped return envelopes as opposed to franked return envelopes (1.24; 95% CI 1.14 to 1.35; P < 0.00001, I 2 = 69%), an assurance of confidentiality (1.33; 95% CI 1.24 to 1.42) and first class outward mailing (1.11; 95% CI 1.02 to 1.21; P = 0.78, I 2 = 0%). The odds of response were reduced when the questionnaire included questions of a sensitive nature (0.94; 95% CI 0.88 to 1.00; P = 0.51, I 2 = 0%). Electronic: We found 32 eligible trials. The trials evaluated 27 different ways of increasing response to electronic questionnaires. We found substantial heterogeneity among trial results in half of the strategies. The odds of response were increased by more than a half using non-monetary incentives (1.72; 95% CI 1.09 to 2.72; heterogeneity P < 0.00001, I 2 = 95%), shorter e-questionnaires (1.73; 1.40 to 2.13; P = 0.08, I 2 = 68%), including a statement that others had responded (1.52; 95% CI 1.36 to 1.70), and a more interesting topic (1.85; 95% CI 1.52 to 2.26). The odds of response increased by a third using a lottery with immediate notification of results (1.37; 95% CI 1.13 to 1.65), an offer of survey results (1.36; 95% CI 1.15 to 1.61), and using a white background (1.31; 95% CI 1.10 to 1.56). The odds of response were also increased with personalised e-questionnaires (1.24; 95% CI 1.17 to 1.32; P = 0.07, I 2 = 41%), using a simple header (1.23; 95% CI 1.03 to 1.48), using textual representation of response categories (1.19; 95% CI 1.05 to 1.36), and giving a deadline (1.18; 95% CI 1.03 to 1.34). The odds of response tripled when a picture was included in an e-mail (3.05; 95% CI 1.84 to 5.06; P = 0.27, I 2 = 19%). The odds of response were reduced when "Survey" was mentioned in the e-mail subject line (0.81; 95% CI 0.67 to 0.97; P = 0.33, I 2 = 0%), and when the e-mail included a male signature (0.55; 95% CI 0.38 to 0.80; P = 0.96, I 2 = 0%). Authors' conclusions: Health researchers using postal and electronic questionnaires can increase response using the strategies shown to be effective in this systematic review. Copyright © 2009 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
--------------------------------------------------------------------------------
Reaxys Database Information|
--------------------------------------------------------------------------------
Resumo:
The resonance Raman spectra of the lowest lying singlet (S-1) state of free-base tetraphenylporphyrin and seven of its isotopomers were recorded under pump-and-probe conditions with a time delay of -2 ns between pump and probe laser pulses, In the S-1 spectra of the isotopomers, as in the ground state, there are dramatic splittings of what appear to be single bands in the natural isotopic abundance spectrum. The most structurally significant bands of the S-1 state were assigned on the basis of the isotope data, In some cases it was necessary to curve fit unresolved bands in the excited-state spectra in order to account for observed intensity ratios and to rationalize isotope shifts, The changes in band positions on excitation to the S-1 state were compared with those from earlier studies on the T-1 state. The changes in band positions were found to be similar For both excited states. Most notable was the similar shift in nu(2), the most widely used marker band for orbital character. The data are interpreted as implying that the lowest lying singlet state is a configuration interaction admixture of b(1u)b(2g) + a(u)b(3g) configurations with the coefficients weighted heavily in favour of b(1n)b(2g), which Is the configuration of the T-1 state. Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
A novel [Ni'S-4'Fe-2(CO)(6)] cluster (1: 'S-4'=(CH3C6H3S2)(2)(CH2)(3)) has been synthesised, structurally characterised and has been shown to undergo a chemically reversible reduction process at -1.31 V versus Fc(+)/Fc to generate the EPR-active monoanion 1(-). Multifrequency Q-, X- and S-band EPR spectra of Ni-61-enriched 1(-) show a well-resolved quartet hyperfine splitting in the low-field region due to the interaction with a single Ni-61 (I = 3/2) nucleus. Simulations of the EPR spectra require the introduction of a single angle of non-coincidence between g, and A(1), and g(3) and A(3) to reproduce all of the features in the S- and X-band spectra. This behaviour provides a rare example of the detection and measurement of non-coincidence effects from frozen-solution EPR spectra without the need for single-crystal measurements, and in which the S-band experiment is sensitive to the non-coincidence. An analysis of the EPR spectra of 1(-) reveals a 24% Ni contribution to the SOMO in 1(-), supporting a delocalisation of the spin-density across the NiFe2 cluster. This observation is supported by IR spectroscopic results which show that the CO stretching frequencies, v(CO), shift to lower frequency by about 70 cm(-1) when 1 is reduced to 1(-). Density functional calculations provide a framework for the interpretation of the spectroscopic properties of 1(-) and suggest that the SOMO is delocalised over the whole cluster, but with little S-centre participation. This electronic structure contrasts with that of the Ni-A, -B, -C and -L forms of [NiFe] hydrogenase in which there is considerable S participation in the SOMO.
Resumo:
An extensive investigation of the ferromagnetic compound TlCo2S2 has resulted in new information on the electronic and magnetic structure. Electronic structure calculations showed that magnetic ordering is energetically favorable with a clear driving force for ferromagnetic coupling within the cobalt layers. TlCo2S2 is metallic and the conductivity is due to holes in the valence band. XPS single crystal measurements did not show evidence of mixed oxidation states of cobalt. Neutron powder diffraction resulted in a ferromagnetic structure with the magnetic moment in the ab-plane. The derived magnetic moment of the cobalt atom is 0.65(2) mu(B) at 10 K and is in very good agreement with the value, mu(sat) = 0.65(1) mu(B) at 10 K, inferred from the magnetic hysteresis curve. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
The structural, thermal, chemisorptive, and electronic properties of Ce on Pt{111} are studied by photoemission, Auger spectroscopy, scanning tunnel microscope (STM), and low-energy electron diffraction (LEED). Stranski-Krastanov-like growth of low-density Ce layers is accompanied by substantial valence charge transfer from Ce to Pt: in line with this, the measured dipole moment and polarizability of adsorbed Ce at low coverages are 7.2 x 10(-30) C m and similar to 1.3x10(-29) m(3), respectively. Pt-Ce intermixing commences at similar to 400 K and with increasing temperature a sequence of five different ordered surface alloys evolves. The symmetry, periodicities, and rotational epitaxy observed by LEED are in good accord with the STM data which reveal the true complexity of the system. The Various bimetallic surface phases are based on growth of crystalline Pt5Ce, a hexagonal layer structure consisting of alternating layers of Pt2Ce and Kagome nets of Pt atoms. This characteristic ABAB layered arrangement of the surface alloys is clearly imaged, and chemisorption data permit a distinction to be made between the more reactive Pt2Ce layer and the less reactive Pt Kagome net. Either type of layer can appear at the surface as the terminating structure, thicker films exhibiting unit mesh parameters characteristic of the bulk alloy.
Resumo:
In this work, density functional theory calculations have been performed to study the geometric, electronic, and energetic properties of two-phase TiO2 composites built by joining two single-phase TiO2 slabs, aiming at verifying possible improvement of the photo-activities of the composites through phase separation of excitons. We find that such desired electronic properties can be determined by several factors. When both the HOMO and LUMO levels of one of the two single-phase TiO2 slabs are higher than the corresponding ones of the other, the composite may have native electronic structures with phase-separated HOMO-LUMO states, especially when the two slabs exhibit highly matched surface lattices. For those pairs of TiO2 slabs with the HOMO and LUMO levels of one phase being within the range of those of the other, though the energetically favored composite give HOMO-LUMO states within one phase, one may still be able to separate them and move the HOMO state to the interface region by destabilizing the interactions between the two slabs.
Resumo:
High temperature ceramic membranes have interesting possibilities for application in areas of new and developing technologies such as hydrocarbon combustion with carbon dioxide capture and electrochemical promotion of catalysis (EPOC). However, membrane module sealing remains a significant technical challenge. In this work a borosilicate glass sealant (50SiO2·25B2O3·25Na2O, mol%) was developed to fit the requirements of sealing an air separation membrane system at intermediate temperatures (300-600 °C). The seal was assessed by testing the leak rates under a range of conditions. The parameters tested included the effect of flowrate on the leak rate, the heating and cooling rates of the reactor and the range of temperatures under which the system could operate. Tests for durability and reliability were also performed. It was found that the most favourable reactor configuration employed a reactor with the ceramic pellet placed underneath the inner chamber alumina tube (inverted configuration), using a quartz wool support to keep the membrane in place prior to sealing. Using this configuration the new glass-based seal was found to be a more suitable sealant than traditional alternatives; it produced lower leak rates at all desirable flowrates, with the potential for rapid heating and cooling and multiple cycling, allowing for prolonged usage. © 2010 Elsevier B.V. All rights reserved.
Resumo:
Visual literacy is essential for 21st century learners. Across the higher education curriculum, students are being asked to use and produce images and visual media in their academic work, and they must be prepared to do so. The Association of College and Research Libraries has published the Visual Literacy Competency Standards for Higher Education, which for the first time, outline specific visual literacy learning outcomes. These Standards present new opportunities for libraries to expand their role in student learning through standards-based teaching and assessment, and to contribute to campus-wide collaborative efforts to develop students’ skills and critical thinking with regard to visual materials.