973 resultados para Liability for hazardous substances pollution damages
Resumo:
"B-221403"--Prelim. p.
Resumo:
"May 1992."
Resumo:
Hearings held March 3-
Resumo:
"B-214392"--Prelim. leaf [1]
Resumo:
"DOT P 5800 2."
Resumo:
"July 1986"--P. [1].
Resumo:
Shipping list no.: 97-0029-P.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
The capacity of dry protonated calcium alginate beads to sorb metals from an industrial effluent was studied and compared with a commercial ion-exchange resin (Lewatit TP 207). Both sorbents decreased zinc, nickel, iron and calcium concentrations in the effluent, and released sodium during treatment. Alginate beads removed lower amounts of heavy metals than the resin, but exhibited faster uptake kinetics. Zinc desorption from the sorbents was achieved in 30 minutes using 0.1 M HCl or 0.1 M H(2)SO(4). Desorption ratios with these acids varied between 90 and 100% for alginate, and 98 to 100% for the ion-exchange resin. Reusability tests with HCl showed that alginate beads can stand acid desorption and recover binding capacity. Overall, the comparison of dry protonated alginate beads with the resin supports the potential of the biosorbent for the treatment of industrial effluents.
Resumo:
A time-resolved inverse spatially offset Raman spectrometer was constructed for depth profiling of Raman-active substances under both the lab and the field environments. The system operating principles and performance are discussed along with its advantages relative to traditional continuous wave spatially offset Raman spectrometer. The developed spectrometer uses a combination of space- and time-resolved detection in order to obtain high-quality Raman spectra from substances hidden behind coloured opaque surface layers, such as plastic and garments, with a single measurement. The time-gated spatially offset Raman spectrometer was successfully used to detect concealed explosives and drug precursors under incandescent and fluorescent background light as well as under daylight. The average screening time was 50 s per measurement. The excitation energy requirements were relatively low (20 mW) which makes the probe safe for screening hazardous substances. The unit has been designed with nanosecond laser excitation and gated detection, making it of lower cost and complexity than previous picosecond-based systems, to provide a functional platform for in-line or in-field sensing of chemical substances.
Resumo:
Raman spectroscopy, when used in spatially offset mode, has become a potential tool for the identification of explosives and other hazardous substances concealed in opaque containers. The molecular fingerprinting capability of Raman spectroscopy makes it an attractive tool for the unambiguous identification of hazardous substances in the field. Additionally, minimal sample preparation is required compared with other techniques. We report a field portable time resolved Raman sensor for the detection of concealed chemical hazards in opaque containers. The new sensor uses a pulsed nanosecond laser source in conjunction with an intensified CCD detector. The new sensor employs a combination of time and space resolved Raman spectroscopy to enhance the detection capability. The new sensor can identify concealed hazards by a single measurement without any chemometric data treatments.
Resumo:
Current concerns regarding terrorism and international crime highlight the need for new techniques for detecting unknown and hazardous substances. A novel Raman spectroscopy-based technique, spatially offset Raman spectroscopy (SORS), was recently devised for non-invasively probing the contents of diffusely scattering and opaque containers. Here, we demonstrate a modified portable SORS sensor for detecting concealed substances in-field under different background lighting conditions. Samples including explosive precursors, drugs and an organophosphate insecticide (chemical warfare agent surrogate) were concealed inside diffusely scattering packaging including plastic, paper and cloth. Measurements were carried out under incandescent and fluorescent light as well as under daylight to assess the suitability of the probe for different real-life conditions. In each case, it was possible to identify the substances against their reference Raman spectra in less than one minute. The developed sensor has potential for rapid detection of concealed hazardous substances in airports, mail distribution centers and customs checkpoints.
Resumo:
The extraction of coal seam gas (CSG) produces large volumes of potentially contaminated water. It has raised concerns about the environmental health impacts of the co-produced CSG water. In this paper, we review CSG water contaminants and their potential health effects in the context of exposure pathways in Queensland’s CSG basins. The hazardous substances associated with CSG water in Queensland include fluoride, boron, lead and benzene. The exposure pathways for CSG water are: (1) water used for municipal purposes, (2) recreational water activities in rivers, (3) occupational exposures, (4) water extracted from contaminated aquifers, and; (5) indirect exposure through the food chain. We recommend mapping of exposure pathways into communities in CSG regions to determine the potentially exposed populations in Queensland. Future efforts to monitor chemicals of concern and consolidate them into a central database will build the necessary capability to undertake a much needed environmental health impact assessment.
Resumo:
Occupational standards concerning the allowable concentrations of chemical compounds in the ambient air of workplaces have been established in several countries at national levels. With the integration of the European Union, a need exists for establishing harmonized Occupational Exposure Limits. For analytical developments, it is apparent that methods for speciation or fractionation of carcinogenic metal compounds will be of increasing practical importance for standard setting. Criteria of applicability under field conditions, cost-effectiveness, and robustness are practical driving forces for new developments. When the European Union issued a list of 62 chemical substances with Occupational Exposure Limits in 2000, 25 substances received a 'skin' notation. The latter indicates that toxicologically significant amounts may be taken up via the skin. Similar notations exist on national levels. For such substances, monitoring concentrations in ambient air will not be sufficient; biological monitoring strategies will gain further importance in the medical surveillance of workers who are exposed to such compounds. Proceedings in establishing legal frameworks for a biological monitoring of chemical exposures within Europe are paralleled by scientific advances in this field. A new aspect is the possibility of a differential adduct monitoring, using blood proteins of different half-life or lifespan. This technique allows differentiation between long-term mean exposure to reactive chemicals and short-term episodes, for example, by accidental overexposure. For further analytical developments, the following issues have been addressed as being particularly important: New dose monitoring strategies, sensitive and reliable methods for detection of DNA adducts, cytogenetic parameters in biological monitoring, methods to monitor exposure to sensitizing chemicals, and parameters for individual susceptibilities to chemical toxicants.