914 resultados para Let operating profitability
Resumo:
The profitability of fast-growing trees was investigated in the northeastern and eastern provinces of Thailand. The financial, economic, and tentative environmental-economic profitability was determined separately for three fast-growing plantation tree species and for three categories of plantation managers: the private industry, the state (the Royal Forest Department) and the farmers. Fast-growing tree crops were also compared with teak (Tectona grandis), a traditional medium or long rotation species, and Para rubber (Hevea brasiliensis) which presently is the most common cultivated tree in Thailand. The optimal rotation for Eucalyptus camaldulensis pulpwood production was eight years. This was the most profitable species in pulpwood production. In sawlog production Acacia mangium and Melia azedarach showed a better financial profitability. Para rubber was more profitable and teak less profitable than the three fast-growing species. The economic profitability was higher than the financial one, and the tentative environmental-economic profitability was slightly higher than the economic profitability. The profitability of tree growing is sensitive to plantation yields and labour cost changes and especially to wood prices. Management options which aim at pulpwood production are more sensitive to input or output changes than those options which include sawlog production. There is an urgent need to improve the growth and yield data and to study the environmental impacts of tree plantations for all species and plantation types.
Resumo:
The design of present generation uncooled Hg1-xCdxTe infrared photon detectors relies on complex heterostructures with a basic unit cell of type (n) under bar (+)/pi/(p) under bar (+). We present an analysis of double barrier (n) under bar (+)/pi/(p) under bar (+) mid wave infrared (x = 0.3) HgCdTe detector for near room temperature operation using numerical computations. The present work proposes an accurate and generalized methodology in terms of the device design, material properties, and operation temperature to study the effects of position dependence of carrier concentration, electrostatic potential, and generation-recombination (g-r) rates on detector performance. Position dependent profiles of electrostatic potential, carrier concentration, and g-r rates were simulated numerically. Performance of detector was studied as function of doping concentration of absorber and contact layers, width of both layers and minority carrier lifetime. Responsivity similar to 0.38 A W-1, noise current similar to 6 x 10(-14) A/Hz(1/2) and D* similar to 3.1 x 10(10)cm Hz(1/2) W-1 at 0.1 V reverse bias have been calculated using optimized values of doping concentration, absorber width and carrier lifetime. The suitability of the method has been illustrated by demonstrating the feasibility of achieving the optimum device performance by carefully selecting the device design and other parameters. (C) 2010 American Institute of Physics. doi:10.1063/1.3463379]
Resumo:
Results on the performance of a 25 cm(2) liquid-feed solid-polymer-electrolyte direct methanol fuel cell (SPE-DMFC), operating under near-ambient conditions, are reported. The SPE-DMFC can yield a maximum power density of c. 200 mW cm(-2) at 90 C while operating with 1 M aqueous methanol and oxygen under ambient pressure. While operating the SPE-DMFC under similar conditions with air, a maximum power density of ca. 100 mW cm(-2) is achieved. Analysis of the electrode reaction kinetics parameters on the methanol electrode suggests that the reaction mechanism for methanol oxidation remains invariant with temperature. Durability data on the SPE-DMFC at an operational current density of 100 mA cm(-2) have also been obtained.
Resumo:
Sensor network nodes exhibit characteristics of both embedded systems and general-purpose systems.A sensor network operating system is a kind of embedded operating system, but unlike a typical embedded operating system, sensor network operatin g system may not be real time, and is constrained by memory and energy constraints. Most sensor network operating systems are based on event-driven approach. Event-driven approach is efficient in terms of time and space.Also this approach does not require a separate stack for each execution context. But using this model, it is difficult to implement long running tasks, like cryptographic operations. A thread based computation requires a separate stack for each execution context, and is less efficient in terms of time and space. In this paper, we propose a thread based execution model that uses only a fixed number of stacks. In this execution model, the number of stacks at each priority level are fixed. It minimizes the stack requirement for multi-threading environment and at the same time provides ease of programming. We give an implementation of this model in Contiki OS by separating thread implementation from protothread implementation completely. We have tested our OS by implementing a clock synchronization protocol using it.
Resumo:
PEFCs employing Nafion-silica (Nafion-SiO2) and Nafion-mesoporous zirconium phosphate (Nafion-MZP) composite membranes are subjected to accelerated-durability test at 100 degrees C and 15% relative humidity (RH) at open-circuit voltage (OCV) for 50 h and performance compared with the PEFC employing pristine Nafion-1135 membrane. PEFCs with composite membranes sustain the operating voltage better with fluoride-ion-emission rate at least an order of magnitude lower than PEFC with pristine Nafion-1135 membrane. Reduced gas-crossover, fast fuel-cell-reaction kinetics and superior performance of the PEFCs with Nafion-SiO2 and Nafion-MZP composite membranes in relation to the PEFC with pristine Nafion-1135 membrane support the long-term operational usage of the former in PEFCs. An 8-cell PEFC stack employing Nafion-SiO2 composite membrane is also assembled and successfully operated at 60 degrees C without external humidification.
Resumo:
Cryosorption pump is the only solution for pumping helium and hydrogen in fusion reactors. It is chosen because it offers highest pumping speed as well as the only suitable pump for the harsh environments in a tokamak. Towards the development of such cryosorption pumps, the optimal choice of the right activated carbon panels is essential. In order to characterize the performance of the panels with indigenously developed activated carbon, a cryocooler based cryosorption pump with scaled down sizes of panels is experimented. The results are compared with the commercial cryopanel used in a CTI cryosorption (model: Cryotorr 7) pump. The cryopanel is mounted on the cold head of the second stage GM cryocooler which cools the cryopanel down to 11K with first stage reaching about similar to 50K. With no heat load, cryopump gives the ultimate vacuum of 2.1E-7 mbar. The pumping speed of different gases such as nitrogen, argon, hydrogen, helium are tested both on indigenous and commercial cryopanel. These studies serve as a bench mark towards the development of better cryopanels to be cooled by liquid helium for use with tokamak.
Resumo:
A review of high operating temperature (HOT) infrared (IR) photon detector technology vis-a-vis material requirements, device design and state of the art achieved is presented in this article. The HOT photon detector concept offers the promise of operation at temperatures above 120 K to near room temperature. Advantages are reduction in system size, weight, cost and increase in system reliability. A theoretical study of the thermal generation-recombination (g-r) processes such as Auger and defect related Shockley Read Hall (SRH) recombination responsible for increasing dark current in HgCdTe detectors is presented. Results of theoretical analysis are used to evaluate performance of long wavelength (LW) and mid wavelength (MW) IR detectors at high operating temperatures. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Subtle manipulation of mutual repulsion and polarisation effects between polar and polarisable chromophores forced in closed proximity allows achieving major (100%) enhancement of the first hyperpolarisability together with increased transparency, breaking the well-known nonlinearity-transparency trade-off paradigm.
Resumo:
The performance of metal hydride based solid sorption cooling systems depends on the driving pressure differential, and the rate of hydrogen transfer between coupled metal hydride beds during cooling and regeneration processes. Conventionally, the mid-plateau pressure difference obtained from `static' equilibrium PCT data are used for the thermodynamic analysis. It is well known that the processes are `dynamic' because the pressure and temperature, and hence the concentration of the hydride beds, are continuously changing. Keeping this in mind, the pair of La0.9Ce0.1Ni5 - LaNi4.7Al0.3 metal hydrides suitable for solid sorption cooling systems were characterised using both static and dynamic methods. It was found that the PCT characteristics, and the resulting enthalpy (Delta H) and entropy (Delta S) values, were significantly different for static and dynamic modes of measurements. In the present study, the solid sorption metal hydride cooling system is analysed taking in to account the actual variation in the pressure difference (Delta P) and the dynamic enthalpy values. Compared to `static' property based analysis, significant decrease in the driving potentials and transferrable amounts of hydrogen, leading to decrease in cooling capacity by 57.8% and coefficient of performance by 31.9% are observed when dynamic PCT data at the flow rate of 80 ml/min are considered. Copyright 2014 (C) Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
Use of fuel other than woody generally has been limited to rice husk and other residues are rarely tried as a fuel in a gasification system. With the availability of woody biomass in most countries like India, alternates fuels are being explored for sustainable supply of fuel. Use of agro residues has been explored after briquetting. There are few feedstock's like coconut fronts, maize cobs, etc, that might require lesser preprocessing steps compared to briquetting. The paper presents a detailed investigation into using coconut fronds as a fuel in an open top down draft gasification system. The fuel has ash content of 7% and was dried to moisture levels of 12 %. The average bulk density was found to be 230 kg/m3 with a fuel size particle of an average size 40 mm as compared to 350 kg/m3 for a standard wood pieces. A typical dry coconut fronds weighs about 2.5kgs and on an average 6 m long and 90 % of the frond is the petiole which is generally used as a fuel. The focus was also to compare the overall process with respect to operating with a typical woody biomass like subabul whose ash content is 1 %. The open top gasification system consists of a reactor, cooling and cleaning system along with water treatment. The performance parameters studied were the gas composition, tar and particulates in the clean gas, water quality and reactor pressure drop apart from other standard data collection of fuel flow rate, etc. The average gas composition was found to be CO 15 1.0 % H-2 16 +/- 1% CH4 0.5 +/- 0.1 % CO2 12.0 +/- 1.0 % and rest N2 compared to CO 19 +/- 1.0 % H-2 17 +/- 1.0 %, CH4 1 +/- 0.2 %, CO2 12 +/- 1.0 % and rest N2. The tar and particulate content in the clean gas has been found to be about 10 and 12 mg/m3 in both cases. The presence of high ash content material increased the pressure drop with coconut frond compared to woody biomass.
Resumo:
This paper proposes a technique to cause unidirectional ion ejection in a quadrupole ion trap mass spectrometer operated in the resonance ejection mode. In this technique a modified auxiliary dipolar excitation signal is applied to the endcap electrodes. This modified signal is a linear combination of two signals. The first signal is the nominal dipolar excitation signal which is applied across the endcap electrodes and the second signal is the second harmonic of the first signal, the amplitude of the second harmonic being larger than that of the fundamental. We have investigated the effect of the following parameters on achieving unidirectional ion ejection: primary signal amplitude, ratio of amplitude of second harmonic to that of primary signal amplitude, different operating points, different scan rates, different mass to charge ratios and different damping constants. In all these simulations unidirectional ejection of destabilized ions has been successfully achieved. (C) 2015 Elsevier B.V. All rights reserved.