850 resultados para Legendre polynomials
Resumo:
The Bohnenblust-Hille inequality says that the $\ell^{\frac{2m}{m+1}}$ -norm of the coefficients of an $m$-homogeneous polynomial $P$ on $\Bbb{C}^n$ is bounded by $\| P \|_\infty$ times a constant independent of $n$, where $\|\cdot \|_\infty$ denotes the supremum norm on the polydisc $\mathbb{D}^n$. The main result of this paper is that this inequality is hypercontractive, i.e., the constant can be taken to be $C^m$ for some $C>1$. Combining this improved version of the Bohnenblust-Hille inequality with other results, we obtain the following: The Bohr radius for the polydisc $\mathbb{D}^n$ behaves asymptotically as $\sqrt{(\log n)/n}$ modulo a factor bounded away from 0 and infinity, and the Sidon constant for the set of frequencies $\bigl\{ \log n: n \text{a positive integer} \le N\bigr\}$ is $\sqrt{N}\exp\{(-1/\sqrt{2}+o(1))\sqrt{\log N\log\log N}\}$.
Resumo:
The main topic of the thesis is optimal stopping. This is treated in two research articles. In the first article we introduce a new approach to optimal stopping of general strong Markov processes. The approach is based on the representation of excessive functions as expected suprema. We present a variety of examples, in particular, the Novikov-Shiryaev problem for Lévy processes. In the second article on optimal stopping we focus on differentiability of excessive functions of diffusions and apply these results to study the validity of the principle of smooth fit. As an example we discuss optimal stopping of sticky Brownian motion. The third research article offers a survey like discussion on Appell polynomials. The crucial role of Appell polynomials in optimal stopping of Lévy processes was noticed by Novikov and Shiryaev. They described the optimal rule in a large class of problems via these polynomials. We exploit the probabilistic approach to Appell polynomials and show that many classical results are obtained with ease in this framework. In the fourth article we derive a new relationship between the generalized Bernoulli polynomials and the generalized Euler polynomials.
Resumo:
Let f(x) be a complex rational function. In this work, we study conditions under which f(x) cannot be written as the composition of two rational functions which are not units under the operation of function composition. In this case, we say that f(x) is prime. We give sufficient conditions for complex rational functions to be prime in terms of their degrees and their critical values, and we derive some conditions for the case of complex polynomials. We consider also the divisibility of integral polynomials, and we present a generalization of a theorem of Nieto. We show that if f(x) and g(x) are integral polynomials such that the content of g divides the content of f and g(n) divides f(n) for an integer n whose absolute value is larger than a certain bound, then g(x) divides f(x) in Z[x]. In addition, given an integral polynomial f(x), we provide a method to determine if f is irreducible over Z, and if not, find one of its divisors in Z[x].
Resumo:
UANL
Resumo:
Soit $\displaystyle P(z):=\sum_{\nu=0}^na_\nu z^{\nu}$ un polynôme de degré $n$ et $\displaystyle M:=\sup_{|z|=1}|P(z)|.$ Sans aucne restriction suplémentaire, on sait que $|P'(z)|\leq Mn$ pour $|z|\leq 1$ (inégalité de Bernstein). Si nous supposons maintenant que les zéros du polynôme $P$ sont à l'extérieur du cercle $|z|=k,$ quelle amélioration peut-on apporter à l'inégalité de Bernstein? Il est déjà connu [{\bf \ref{Mal1}}] que dans le cas où $k\geq 1$ on a $$(*) \qquad |P'(z)|\leq \frac{n}{1+k}M \qquad (|z|\leq 1),$$ qu'en est-il pour le cas où $k < 1$? Quelle est l'inégalité analogue à $(*)$ pour une fonction entière de type exponentiel $\tau ?$ D'autre part, si on suppose que $P$ a tous ses zéros dans $|z|\geq k \, \, (k\geq 1),$ quelle est l'estimation de $|P'(z)|$ sur le cercle unité, en terme des quatre premiers termes de son développement en série entière autour de l'origine. Cette thèse constitue une contribution à la théorie analytique des polynômes à la lumière de ces questions.
Resumo:
This paper reports a novel region-based shape descriptor based on orthogonal Legendre moments. The preprocessing steps for invariance improvement of the proposed Improved Legendre Moment Descriptor (ILMD) are discussed. The performance of the ILMD is compared to the MPEG-7 approved region shape descriptor, angular radial transformation descriptor (ARTD), and the widely used Zernike moment descriptor (ZMD). Set B of the MPEG-7 CE-1 contour database and all the datasets of the MPEG-7 CE-2 region database were used for experimental validation. The average normalized modified retrieval rate (ANMRR) and precision- recall pair were employed for benchmarking the performance of the candidate descriptors. The ILMD has lower ANMRR values than ARTD for most of the datasets, and ARTD has a lower value compared to ZMD. This indicates that overall performance of the ILMD is better than that of ARTD and ZMD. This result is confirmed by the precision-recall test where ILMD was found to have better precision rates for most of the datasets tested. Besides retrieval accuracy, ILMD is more compact than ARTD and ZMD. The descriptor proposed is useful as a generic shape descriptor for content-based image retrieval (CBIR) applications
Resumo:
In this work, we present a generic formula for the polynomial solution families of the well-known differential equation of hypergeometric type s(x)y"n(x) + t(x)y'n(x) - lnyn(x) = 0 and show that all the three classical orthogonal polynomial families as well as three finite orthogonal polynomial families, extracted from this equation, can be identified as special cases of this derived polynomial sequence. Some general properties of this sequence are also given.
Resumo:
This article surveys the classical orthogonal polynomial systems of the Hahn class, which are solutions of second-order differential, difference or q-difference equations. Orthogonal families satisfy three-term recurrence equations. Example applications of an algorithm to determine whether a three-term recurrence equation has solutions in the Hahn class - implemented in the computer algebra system Maple - are given. Modifications of these families, in particular associated orthogonal systems, satisfy fourth-order operator equations. A factorization of these equations leads to a solution basis.
Resumo:
In a previous paper we have determined a generic formula for the polynomial solution families of the well-known differential equation of hypergeometric type σ(x)y"n(x)+τ(x)y'n(x)-λnyn(x)=0. In this paper, we give another such formula which enables us to present a generic formula for the values of monic classical orthogonal polynomials at their boundary points of definition.
Resumo:
Various results on parity of the number of irreducible factors of given polynomials over finite fields have been obtained in the recent literature. Those are mainly based on Swan’s theorem in which discriminants of polynomials over a finite field or the integral ring Z play an important role. In this paper we consider discriminants of the composition of some polynomials over finite fields. The relation between the discriminants of composed polynomial and the original ones will be established. We apply this to obtain some results concerning the parity of the number of irreducible factors for several special polynomials over finite fields.
Resumo:
Irreducible trinomials of given degree n over F_2 do not always exist and in the cases that there is no irreducible trinomial of degree n it may be effective to use trinomials with an irreducible factor of degree n. In this paper we consider some conditions under which irreducible polynomials divide trinomials over F_2. A condition for divisibility of self-reciprocal trinomials by irreducible polynomials over F_2 is established. And we extend Welch's criterion for testing if an irreducible polynomial divides trinomials x^m + x^s + 1 to the trinomials x^am + x^bs + 1.
Resumo:
Using the functional approach, we state and prove a characterization theorem for classical orthogonal polynomials on non-uniform lattices (quadratic lattices of a discrete or a q-discrete variable) including the Askey-Wilson polynomials. This theorem proves the equivalence between seven characterization properties, namely the Pearson equation for the linear functional, the second-order divided-difference equation, the orthogonality of the derivatives, the Rodrigues formula, two types of structure relations,and the Riccati equation for the formal Stieltjes function.