915 resultados para Left-hemisphere


Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has been proposed that language impairments in children with Autism Spectrum Disorders (ASD) stem from atypical neural processing of speech and/or nonspeech sounds. However, the strength of this proposal is compromised by the unreliable outcomes of previous studies of speech and nonspeech processing in ASD. The aim of this study was to determine whether there was an association between poor spoken language and atypical event-related field (ERF) responses to speech and nonspeech sounds in children with ASD (n = 14) and controls (n = 18). Data from this developmental population (ages 6-14) were analysed using a novel combination of methods to maximize the reliability of our findings while taking into consideration the heterogeneity of the ASD population. The results showed that poor spoken language scores were associated with atypical left hemisphere brain responses (200 to 400 ms) to both speech and nonspeech in the ASD group. These data support the idea that some children with ASD may have an immature auditory cortex that affects their ability to process both speech and nonspeech sounds. Their poor speech processing may impair their ability to process the speech of other people, and hence reduce their ability to learn the phonology, syntax, and semantics of their native language.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The time perception is critical for environmental adaptation in humans and other species. The temporal processing, has evolved through different neural systems, each responsible for processing different time scales. Among the most studied scales is that spans the arrangement of seconds to minutes. Evidence suggests that the dorsolateral prefrontal (DLPFC) cortex has relationship with the time perception scale of seconds. However, it is unclear whether the deficit of time perception in patients with brain injuries or even "reversible lesions" caused by transcranial magnetic stimulation (TMS) in this region, whether by disruption of other cognitive processes (such as attention and working memory) or the time perception itself. Studies also link the region of DLPFC in emotional regulation and specifically the judgment and emotional anticipation. Given this, our objective was to study the role of the dorsolateral prefrontal cortex in the time perception intervals of active and emotionally neutral stimuli, from the effects of cortical modulation by transcranial direct current stimulation (tDCS), through the cortical excitation (anodic current), inhibition (cathode current) and control (sham) using the ranges of 4 and 8 seconds. Our results showed that there is an underestimation when the picture was presented by 8 seconds, with the anodic current in the right DLPFC, there is an underestimation and with cathodic current in the left DLPFC, there is an overestimation of the time reproduction with neutral ones. The cathodic current over the left DLPFC leads to an inverse effect of neutral ones, an underestimation of time with negative pictures. Positive or negative pictures improved estimates for 8 second and positive pictures inhibited the effect of tDCS in DLPFC in estimating time to 4 seconds. With this work, we conclude that the DLPFC plays a key role in the o time perception and largely corresponds to the stages of memory and decision on the internal clock model. The left hemisphere participates in the perception of time in both active and emotionally neutral contexts, and we can conclude that the ETCC and an effective method to study the cortical functions in the time perception in terms of cause and effect.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stroke is the leading cause of long-term disability among adults and motor relearning is essential in motor sequelae recovery. Therefore, various techniques have been proposed to achieve this end, among them Virtual Reality. The aim of the study was to evaluate electroencephalographic activity of stroke patients in motor learning of a virtual reality-based game. The study included 10 patients with chronic stroke, right-hande; 5 with left brain injury (LP), mean age 48.8 years (± 4.76) and 5 with injury to the right (RP), mean age 52 years (± 10.93). Participants were evaluated for electroencephalographic (EEG) activity and performance while performing 15 repetitions of darts game in XBOX Kinect and also through the NIHSS, MMSE, Fugl-Meyer and the modified Ashworth scale. Patients underwent a trainning with 45 repetitions of virtual darts game, 12 sessions in four weeks. After training, patients underwent reassessment of EEG activity and performance in virtual game of darts (retention). Data were analyzed using ANOVA for repeated measures. According to the results, there were differences between the groups (PD and PE) in frequencies Low Alpha (p = 0.0001), High Alpha (p = 0.0001) and Beta (p = 0.0001). There was an increase in alpha activation powers and a decrease in beta in the phase retention of RP group. In LP group was observed increased alpha activation potency, but without decrease in beta activation. Considering the asymmetry score, RP group increased brain activation in the left hemisphere with the practice in the frontal areas, however, LP group had increased activation of the right hemisphere in fronto-central areas, temporal and parietal. As for performance, it was observed a decrease in absolute error in the game for RP group between assessment and retention (p = 0.015), but this difference was not observed for LP group (p = 0.135). It follows then that the right brain injury patients benefited more from darts game training in the virtual environment with respect to the motor learning process, reducing neural effort in ipsilesionais areas and errors with the practice of the task. In contrast, patients with lesions in left hemisphere decrease neural effort in contralesionais areas important for motor learning and showed no performance improvements with practice of 12 sessions of virtual dart game. Thus, the RV can be used in rehabilitation of stroke patients upper limb, but the laterality of the injury should be considered in programming the motor learning protocol.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: There is growing evidence that individual EEG differences may aid in classifying patients with major depressive disorder (MDD) and also help predict clinical response to antidepressant treatment. This study aims to compare the effectiveness of EEG frequency band power, alpha asymmetry and prefrontal theta cordance towards escitalopram response prediction and MDD diagnosis, in a multi-site initiative. Methods: Resting EEG (eyes open and closed) was recorded from 64 electrodes in 44 depressed patients and 20 healthy controls at baseline, 2 weeks post-treatment and 8 weeks post-treatment. Clinical response was measured as change from baseline MADRS of 50% or more. EEG measures were analyzed (1) at baseline (2) at 2 weeks post-treatment and (3) as an ‘‘early change” variable defined as change in EEG from baseline to 2 weeks post-treatment. Results: At baseline, responders exhibited greater absolute alpha power in the left hemisphere versus the right while non-responders showed the opposite. Responders further exhibited a cortical asymmetry of greater right relative to left activity in parietal areas. Groups also differed in baseline relative delta power with responders showing greater power in the right hemisphere versus the left while non-responders showed the opposite. At 2 weeks post-treatment, responders exhibited greater absolute beta power in the left hemisphere relative to right and the opposite was noted for non-responders. The opposite pattern was noted for absolute and relative delta power at 2 weeks post-treatment. Responders exhibited early reduction in relative alpha power and early increments in relative theta power. Non-responders showed a significant early increase in prefrontal theta cordance. Absolute delta power helped distinguish MDD patients from healthy controls. Conclusions: Hemispheric asymmetries in the alpha and delta bands at pre-treatment baseline and at 2 weeks post-treatment have moderate to moderately strong predictive utility towards antidepressant treatment response. These findings have significant potential for improving clinical practice in psychiatry by eventually guiding clinical choice of treatments. This would greatly benefit patients awaiting relief from depressive symptoms as treatment optimization would help overcome problems associated with delayed recovery. Our results also indicate that resting EEG activity may have clinical utility in predicting MDD diagnosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract : Many individuals that had a stroke have motor impairments such as timing deficits that hinder their ability to complete daily activities like getting dressed. Robotic rehabilitation is an increasingly popular therapeutic avenue in order to improve motor recovery among this population. Yet, most studies have focused on improving the spatial aspect of movement (e.g. reaching), and not the temporal one (e.g. timing). Hence, the main aim of this study was to compare two types of robotic rehabilitation on the immediate improvement of timing accuracy: haptic guidance (HG), which consists of guiding the person to make the correct movement, and thus decreasing his or her movement errors, and error amplification (EA), which consists of increasing the person’s movement errors. The secondary objective consisted of exploring whether the side of the stroke lesion had an effect on timing accuracy following HG and EA training. Thirty-four persons that had a stroke (average age 67 ± 7 years) participated in a single training session of a timing-based task (simulated pinball-like task), where they had to activate a robot at the correct moment to successfully hit targets that were presented a random on a computer screen. Participants were randomly divided into two groups, receiving either HG or EA. During the same session, a baseline phase and a retention phase were given before and after each training, and these phases were compared in order to evaluate and compare the immediate impact of HG and EA on movement timing accuracy. The results showed that HG helped improve the immediate timing accuracy (p=0.03), but not EA (p=0.45). After comparing both trainings, HG was revealed to be superior to EA at improving timing (p=0.04). Furthermore, a significant correlation was found between the side of stroke lesion and the change in timing accuracy following EA (r[subscript pb]=0.7, p=0.001), but not HG (r[subscript pb]=0.18, p=0.24). In other words, a deterioration in timing accuracy was found for participants with a lesion in the left hemisphere that had trained with EA. On the other hand, for the participants having a right-sided stroke lesion, an improvement in timing accuracy was noted following EA. In sum, it seems that HG helps improve the immediate timing accuracy for individuals that had a stroke. Still, the side of the stroke lesion seems to play a part in the participants’ response to training. This remains to be further explored, in addition to the impact of providing more training sessions in order to assess any long-term benefits of HG or EA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Ph.D, Neuroscience Studies) -- Queen's University, 2016-08-27 00:55:35.782

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Diffusion imaging can map anatomical connectivity in the living brain, offering new insights into fundamental questions such as how the left and right brain hemispheres differ. Anatomical brain asymmetries are related to speech and language abilities, but less is known about left/right hemisphere differences in brain wiring. To assess this, we scanned 457 young adults (age 23.4±2.0 SD years) and 112 adolescents (age 12-16) with 4-Tesla 105-gradient high-angular resolution diffusion imaging. We extracted fiber tracts throughout the brain with a Hough transform method. A 70×70 connectivity matrix was created, for each subject, based on the proportion of fibers intersecting 70 cortical regions. We identified significant differences in the proportions of fibers intersecting left and right hemisphere cortical regions. The degree of asymmetry in the connectivity matrices varied with age, as did the asymmetry in network topology measures such as the small-world effect.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hemispheric differences in the learning and generalization of pattern categories were explored in two experiments involving sixteen patients with unilateral posterior, cerebral lesions in the left (LH) or right (RH) hemisphere. In each experiment participants were first trained to criterion in a supervised learning paradigm to categorize a set of patterns that either consisted of simple geometric forms (Experiment 1) or unfamiliar grey-level images (Experiment 2). They were then tested for their ability to generalize acquired categorical knowledge to contrast-reversed versions of the learning patterns. The results showed that RH lesions impeded category learning of unfamiliar grey-level images more severely than LH lesions, whereas this relationship appeared reversed for categories defined by simple geometric forms. With regard to generalization to contrast reversal, categorization performance of LH and RH patients was unaffected in the case of simple geometric forms. However, generalization to of contrast-reversed grey-level images distinctly deteriorated for patients with LH lesions relative to those with RH lesions, with the latter (but not the former) being consistently unable to identify the pattern manipulation. These findings suggest a differential use of contrast information in the representation of pattern categories in the two hemispheres. Such specialization appears in line with previous distinctions between a predominantly lefthemispheric, abstract-analytical and a righthemispheric, specific-holistic representation of object categories, and their prediction of a mandatory representation of contrast polarity in the RH. Some implications for the well-established dissociation of visual disorders for the recognition of faces and letters are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Au cours des dernières années, des méthodes non-invasives de stimulations permettant de moduler l’excitabilité des neurones suivant des lésions du système nerveux central ont été développées. Ces méthodes sont maintenant couramment utilisées pour étudier l’effet de l’inhibition du cortex contralésionnel sur la récupération motrice à la suite d’un accident vasculocérébral (AVC). Bien que plusieurs de ces études rapportent des résultats prometteurs, les paramètres permettant une récupération optimale demeurent encore inconnus. Chez les patients victimes d'un AVC, il est difficile de débuter les traitements rapidement et d'initier l’inhibition dans les heures suivant la lésion. L'impact de ce délai est toujours inconnu. De plus, aucune étude n’a jusqu’à maintenant évalué l’effet de la durée de l’inhibition sur la récupération du membre parétique. Dans le laboratoire du Dr Numa Dancause, nous avons utilisé un modèle bien établi de lésion ischémique chez le rat pour explorer ces questions. Nos objectifs étaient d’évaluer 1) si une inactivation de l’hémisphère contralésionnel initiée dans les heures qui suivent la lésion peut favoriser la récupération et 2) l’effet de la durée de l’inactivation sur la récupération du membre parétique. Suite à une lésion dans le cortex moteur induite par injections d’un vasoconstricteur, nous avons inactivé l’hémisphère contralésionnel à l’aide d’une pompe osmotique assurant l’infusion continue d’un agoniste du GABA (Muscimol). Dans différents groupes expérimentaux, nous avons inactivé l’hémisphère contralésionnel pour une durée de 3, 7 et 14 jours suivant la lésion. Dans un autre groupe, le Muscimol a été infusé pour 14 jours mais à un débit moindre de façon à pouvoir étudier le lien entre la fonction du membre non-parétique et la récupération du membre parétique. Les données comportementales de ces groupes ont été comparées à celles d’animaux ayant récupéré de façon spontanée d'une lésion similaire. Nos résultats indiquent que l’augmentation de la durée de l’inactivation (de 3 à 14 jours) accélère la récupération du membre parétique. De plus, les deux groupes ayant reçu une inactivation d'une durée de 14 jours ont montré une plus grande récupération fonctionnelle que le groupe n’ayant pas reçu d’inactivation de l’hémisphère contralésionnel, le groupe contrôle. Nos résultats suggèrent donc que l’inactivation de l’hémisphère contralésionnel initiée dans les heures suivant la lésion favorise la récupération du membre parétique. La durée d’inhibition la plus efficace (14 jours) dans notre modèle animal est beaucoup plus longues que celles utilisées jusqu’à maintenant chez l’homme. Bien qu’il soit difficile d’extrapoler la durée idéale à utiliser chez les patients à partir de nos données, nos résultats suggèrent que des traitements de plus longue durée pourraient être bénéfiques. Finalement, un message clair ressort de nos études sur la récupération fonctionnelle après un AVC: dans le développement de traitements basés sur l’inhibition de l’hémisphère contralésionnel, la durée de l’inactivation est un facteur clef à considérer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The visual perception of size in different regions of external space was studied in Parkinson's disease (PD). A group of patients with worse left-sided symptoms (LPD) was compared with a group with worse right-sided symptoms (RPD) and with a group of age-matched controls on judgements of the relative height or width of two rectangles presented in different regions of external space. The relevant dimension of one rectangle (the 'standard') was held constant, while that of the other (the 'variable') was varied in a method of constant stimuli. The point of subjective equality (PSE) of rectangle width or height was obtained by probit analysis as the mean of the resulting psychometric function. When the standard was in left space, the PSE of the LPD group occurred when the variable was smaller, and when the standard was in right space, when the variable was larger. Similarly, when the standard rectangle was presented in upper space, and the variable in lower space, the PSE occurred when the variable was smaller, an effect which was similar in both left and right spaces. In all these experiments, the PSEs for both the controls and the RPD group did not differ significantly, and were close to a physical match, and the slopes of the psychometric functions were steeper in the controls than the patients, though not significantly so. The data suggest that objects appear smaller in the left and upper visual spaces in LPD, probably because of right hemisphere impairment. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three experiments attempted to clarify the effect of altering the spatial presentation of irrelevant auditory information. Previous research using serial recall tasks demonstrated a left-ear disadvantage for the presentation of irrelevant sounds (Hadlington, Bridges, & Darby, 2004). Experiments 1 and 2 examined the effects of manipulating the location of irrelevant sound on either a mental arithmetic task (Banbury & Berry, 1998) or a missing-item task (Jones & Macken, 1993; Experiment 4). Experiment 3 altered the amount of change in the irrelevant stream to assess how this affected the level of interference elicited. Two prerequisites appear necessary to produce the left-ear disadvantage; the presence of ordered structural changes in the irrelevant sound and the requirement for serial order processing of the attended information. The existence of a left-ear disadvantage highlights the role of the right hemisphere in the obligatory processing of auditory information. (c) 2006 Published by Elsevier Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The combination of acquired mirror writing and reading is an extremely rare neurological disorder. It is encountered when brain damaged patients prefer horizontally mirrored over normal script in writing and reading. Previous theories have related this pathology to a disinhibition of mirrored engrams in the non-dominant hemisphere, possibly accompanied by a reversal of the preferred scanning direction. Here, we report the experimental investigation of PR, a patient who developed pronounced mirror writing and reading following septic shock that caused hypoxic brain damage. A series of five oculomotor experiments revealed that the patient's preferred scanning direction was indeed reversed. However, PR showed striking scanpath abnormalities and mirror reversals that cannot be explained by previous theories. Considered together with mirror phenomena she displayed in neuropsychological tasks and everyday activities, our findings suggest a horizontal reversal of visual information on a perceptual level. In addition, a systematic manipulation of visual variables within two further experiments had dramatic effects on her mirror phenomena. When confronted with moving, flickering or briefly presented stimuli, PR showed hardly any left-right reversals. Not only do these findings underline the perceptual nature of her disorder, but also allow interpretation of the pathology in terms of a dissociation between visual subsystems. We speculate that early visual cortices are crucially involved in this dissociation. More generally, her mirrored vision may represent an extreme clinical manifestation of the relative instability of the horizontal axis in spatial vision.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article reviews attempts to characterize the mental operations mediated by left inferior prefrontal cortex, especially the anterior and inferior portion of the gyrus, with the functional neuroimaging techniques of positron emission tomography and functional magnetic resonance imaging. Activations in this region occur during semantic, relative to nonsemantic, tasks for the generation of words to semantic cues or the classification of words or pictures into semantic categories. This activation appears in the right prefrontal cortex of people known to be atypically right-hemisphere dominant for language. In this region, activations are associated with meaningful encoding that leads to superior explicit memory for stimuli and deactivations with implicit semantic memory (repetition priming) for words and pictures. New findings are reported showing that patients with global amnesia show deactivations in the same region associated with repetition priming, that activation in this region reflects selection of a response from among numerous relative to few alternatives, and that activations in a portion of this region are associated specifically with semantic relative to phonological processing. It is hypothesized that activations in left inferior prefrontal cortex reflect a domain-specific semantic working memory capacity that is invoked more for semantic than nonsemantic analyses regardless of stimulus modality, more for initial than for repeated semantic analysis of a word or picture, more when a response must be selected from among many than few legitimate alternatives, and that yields superior later explicit memory for experiences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Humans imitate biological movements faster than non-biological movements. The faster response has been attributed to an activation of the human mirror neuron system, which is thought to match observation and execution of actions. However, it is unclear which cortical areas are responsible for this behavioural advantage. Also, little is known about the timing of activations. Using whole-head magnetoencephalography we recorded neuronal responses to single biological finger movements and non-biological dot movements while the subjects were required to perform an imitation task or an observation task, respectively. Previous imaging studies on the human mirror neurone system suggested that activation in response to biological movements would be stronger in ventral premotor, parietal and superior temporal regions. In accordance with previous studies, reaction times to biological movements were faster than those to dot movements in all subjects. The analysis of evoked magnetic fields revealed that the reaction time benefit was paralleled by stronger and earlier activation of the left temporo-occipital cortex, right superior temporal area and right ventral motor/premotor area. The activity patterns suggest that the latter areas mediate the observed behavioural advantage of biological movements and indicate a predominant contribution of the right temporo-frontal hemisphere to action observation–execution matching processes in intransitive movements, which has not been reported previously.