952 resultados para Least Square Method
Resumo:
In der Erdöl– und Gasindustrie sind bildgebende Verfahren und Simulationen auf der Porenskala im Begriff Routineanwendungen zu werden. Ihr weiteres Potential lässt sich im Umweltbereich anwenden, wie z.B. für den Transport und Verbleib von Schadstoffen im Untergrund, die Speicherung von Kohlendioxid und dem natürlichen Abbau von Schadstoffen in Böden. Mit der Röntgen-Computertomografie (XCT) steht ein zerstörungsfreies 3D bildgebendes Verfahren zur Verfügung, das auch häufig für die Untersuchung der internen Struktur geologischer Proben herangezogen wird. Das erste Ziel dieser Dissertation war die Implementierung einer Bildverarbeitungstechnik, die die Strahlenaufhärtung der Röntgen-Computertomografie beseitigt und den Segmentierungsprozess dessen Daten vereinfacht. Das zweite Ziel dieser Arbeit untersuchte die kombinierten Effekte von Porenraumcharakteristika, Porentortuosität, sowie die Strömungssimulation und Transportmodellierung in Porenräumen mit der Gitter-Boltzmann-Methode. In einer zylindrischen geologischen Probe war die Position jeder Phase auf Grundlage der Beobachtung durch das Vorhandensein der Strahlenaufhärtung in den rekonstruierten Bildern, das eine radiale Funktion vom Probenrand zum Zentrum darstellt, extrahierbar und die unterschiedlichen Phasen ließen sich automatisch segmentieren. Weiterhin wurden Strahlungsaufhärtungeffekte von beliebig geformten Objekten durch einen Oberflächenanpassungsalgorithmus korrigiert. Die Methode der „least square support vector machine” (LSSVM) ist durch einen modularen Aufbau charakterisiert und ist sehr gut für die Erkennung und Klassifizierung von Mustern geeignet. Aus diesem Grund wurde die Methode der LSSVM als pixelbasierte Klassifikationsmethode implementiert. Dieser Algorithmus ist in der Lage komplexe geologische Proben korrekt zu klassifizieren, benötigt für den Fall aber längere Rechenzeiten, so dass mehrdimensionale Trainingsdatensätze verwendet werden müssen. Die Dynamik von den unmischbaren Phasen Luft und Wasser wird durch eine Kombination von Porenmorphologie und Gitter Boltzmann Methode für Drainage und Imbibition Prozessen in 3D Datensätzen von Böden, die durch synchrotron-basierte XCT gewonnen wurden, untersucht. Obwohl die Porenmorphologie eine einfache Methode ist Kugeln in den verfügbaren Porenraum einzupassen, kann sie dennoch die komplexe kapillare Hysterese als eine Funktion der Wassersättigung erklären. Eine Hysterese ist für den Kapillardruck und die hydraulische Leitfähigkeit beobachtet worden, welche durch die hauptsächlich verbundenen Porennetzwerke und der verfügbaren Porenraumgrößenverteilung verursacht sind. Die hydraulische Konduktivität ist eine Funktion des Wassersättigungslevels und wird mit einer makroskopischen Berechnung empirischer Modelle verglichen. Die Daten stimmen vor allem für hohe Wassersättigungen gut überein. Um die Gegenwart von Krankheitserregern im Grundwasser und Abwässern vorhersagen zu können, wurde in einem Bodenaggregat der Einfluss von Korngröße, Porengeometrie und Fluidflussgeschwindigkeit z.B. mit dem Mikroorganismus Escherichia coli studiert. Die asymmetrischen und langschweifigen Durchbruchskurven, besonders bei höheren Wassersättigungen, wurden durch dispersiven Transport aufgrund des verbundenen Porennetzwerks und durch die Heterogenität des Strömungsfeldes verursacht. Es wurde beobachtet, dass die biokolloidale Verweilzeit eine Funktion des Druckgradienten als auch der Kolloidgröße ist. Unsere Modellierungsergebnisse stimmen sehr gut mit den bereits veröffentlichten Daten überein.
Resumo:
We used the Green's functions from auto-correlations and cross-correlations of seismic ambient noise to monitor temporal velocity changes in the subsurface at Villarrica volcano in the Southern Andes of Chile. Campaigns were conducted from March to October 2010 and February to April 2011 with 8 broadband and 6 short-period stations, respectively. We prepared the data by removing the instrument response, normalizing with a root-mean-square method, whitening the spectra, and filtering from 1 to 10 Hz. This frequency band was chosen based on the relatively high background noise level in that range. Hour-long auto- and cross-correlations were computed and the Green's functions stacked by day and total time. To track the temporal velocity changes we stretched a 24 hour moving window of correlation functions from 90% to 110% of the original and cross correlated them with the total stack. All of the stations' auto-correlations detected what is interpreted as an increase in velocity in 2010, with an average increase of 0.13%. Cross-correlations from station V01, near the summit, to the other stations show comparable changes that are also interpreted as increases in velocity. We attribute this change to the closing of cracks in the subsurface due either to seasonal snow loading or regional tectonics. In addition to the common increase in velocity across the stations, there are excursions in velocity on the same order lasting several days. Amplitude decreases as the station's distance from the vent increases suggesting these excursions may be attributed to changes within the volcanic edifice. In at least two occurrences the amplitudes at stations V06 and V07, the stations farthest from the vent, are smaller. Similar short temporal excursions were seen in the auto-correlations from 2011, however, there was little to no increase in the overall velocity.
Resumo:
This paper studied two different regression techniques for pelvic shape prediction, i.e., the partial least square regression (PLSR) and the principal component regression (PCR). Three different predictors such as surface landmarks, morphological parameters, or surface models of neighboring structures were used in a cross-validation study to predict the pelvic shape. Results obtained from applying these two different regression techniques were compared to the population mean model. In almost all the prediction experiments, both regression techniques unanimously generated better results than the population mean model, while the difference on prediction accuracy between these two regression methods is not statistically significant (α=0.01).
Resumo:
Over the past few decades, the advantages of the visible-near infra-red (VisNIR) diffuse reflectance spectrometer (DRS) method have enabled prediction of soil organic carbon (SOC). In this study, SOC was predicted using regression models for samples taken from three sites (Gununo, Maybar and Anjeni) in Ethiopia. SOC was characterized in laboratory using conventional wet chemistry and VisNIR-DRS methods. Principal component analysis (PCA), principal component regression (PCR) and partial least square regression (PLS) models were developed using Unscrambler X 10.2. PCA results show that the first two components accounted for a minimum of 96% variation which increased for individual sites and with data treatments. Correlation (r), coefficient of determination (R2) and residual prediction deviation (RPD) were used to rate four models built. PLS model (r, R2, RPD) values for Anjeni were 0.9, 0.9 and 3.6; for Gununo values 0.6, 0.3 and 1.2; for Maybar values 0.6, 0.3 and 0.9, and for the three sites values 0.7, 0.6 and 1.5, respectively. PCR model values (r, R2, RPD) for Anjeni were 0.9, 0.8 and 2.7; for Gununo values 0.5, 0.3 and 1; for Maybar values 0.5, 0.1 and 0.7, and for the three sites values 0.7, 0.5 and 1.2, respectively. Comparison and testing of models shows superior performance of PLS to PCR. Models were rated as very poor (Maybar), poor (Gununo and three sites) and excellent (Anjeni). A robust model, Anjeni, is recommended for prediction of SOC in Ethiopia.
Resumo:
Indoor localization systems become more interesting for researchers because of the attractiveness of business cases in various application fields. A WiFi-based passive localization system can provide user location information to third-party providers of positioning services. However, indoor localization techniques are prone to multipath and Non-Line Of Sight (NLOS) propagation, which lead to significant performance degradation. To overcome these problems, we provide a passive localization system for WiFi targets with several improved algorithms for localization. Through Software Defined Radio (SDR) techniques, we extract Channel Impulse Response (CIR) information at the physical layer. CIR is later adopted to mitigate the multipath fading problem. We propose to use a Nonlinear Regression (NLR) method to relate the filtered power information to propagation distances, which significantly improves the ranging accuracy compared to the commonly used log-distance path loss model. To mitigate the influence of ranging errors, a new trilateration algorithm is designed as well by combining Weighted Centroid and Constrained Weighted Least Square (WC-CWLS) algorithms. Experiment results show that our algorithm is robust against ranging errors and outperforms the linear least square algorithm and weighted centroid algorithm.
Resumo:
A Bayesian approach to estimation of the regression coefficients of a multinominal logit model with ordinal scale response categories is presented. A Monte Carlo method is used to construct the posterior distribution of the link function. The link function is treated as an arbitrary scalar function. Then the Gauss-Markov theorem is used to determine a function of the link which produces a random vector of coefficients. The posterior distribution of the random vector of coefficients is used to estimate the regression coefficients. The method described is referred to as a Bayesian generalized least square (BGLS) analysis. Two cases involving multinominal logit models are described. Case I involves a cumulative logit model and Case II involves a proportional-odds model. All inferences about the coefficients for both cases are described in terms of the posterior distribution of the regression coefficients. The results from the BGLS method are compared to maximum likelihood estimates of the regression coefficients. The BGLS method avoids the nonlinear problems encountered when estimating the regression coefficients of a generalized linear model. The method is not complex or computationally intensive. The BGLS method offers several advantages over Bayesian approaches. ^
Resumo:
Transitionprobabilities and oscillatorstrengths of 176 spectral lines with astrophysical interest arising from 5d10ns (n = 7,8), 5d10np (n = 6,7), 5d10nd (n = 6,7), 5d105f, 5d105g, 5d10nh (n = 6,7,8), 5d96s2, and 5d96s6p configurations, and radiativelifetimes for 43 levels of PbIV, have been calculated. These values were obtained in intermediate coupling (IC) and using relativistic Hartree–Fock calculations including core-polarization effects. For the IC calculations, we use the standard method of least-square fitting from experimental energy levels by means of the Cowan computer code. The inclusion in these calculations of the 5d107p and 5d105f configurations has facilitated a complete assignment of the energy levels in the PbIV. Transitionprobabilities, oscillatorstrengths, and radiativelifetimes obtained are generally in good agreement with the experimental data.
Resumo:
This paper aims to analyze the different adjustment methods commonly used to characterize indirect metrology circular features: least square circle, minimum zone circle, maximum inscribed circle and minimum circumscribed circle. The analysis was performed from images obtained by digital optical machines. The calculation algorithms, self-developed, have been implemented in Matlab® and take into consideration as study variables: the amplitude of angular sector of the circular feature, its nominal radio and the magnification used by the optical machine. Under different conditions, it was determined the radius and circularity error of different circular standards. The comparison of the results, obtained by the different methods of adjustments used, with certified values for the standards, has allowed us to determine the accuracy of each method and its scope.
Resumo:
The objective of this study was to assess the potential of visible and near infrared spectroscopy (VIS+NIRS) combined with multivariate analysis for identifying the geographical origin of cork. The study was carried out on cork planks and natural cork stoppers from the most representative cork-producing areas in the world. Two training sets of international and national cork planks were studied. The first set comprised a total of 479 samples from Morocco, Portugal, and Spain, while the second set comprised a total of 179 samples from the Spanish regions of Andalusia, Catalonia, and Extremadura. A training set of 90 cork stoppers from Andalusia and Catalonia was also studied. Original spectroscopic data were obtained for the transverse sections of the cork planks and for the body and top of the cork stoppers by means of a 6500 Foss-NIRSystems SY II spectrophotometer using a fiber optic probe. Remote reflectance was employed in the wavelength range of 400 to 2500 nm. After analyzing the spectroscopic data, discriminant models were obtained by means of partial least square (PLS) with 70% of the samples. The best models were then validated using 30% of the remaining samples. At least 98% of the international cork plank samples and 95% of the national samples were correctly classified in the calibration and validation stage. The best model for the cork stoppers was obtained for the top of the stoppers, with at least 90% of the samples being correctly classified. The results demonstrate the potential of VIS + NIRS technology as a rapid and accurate method for predicting the geographical origin of cork plank and stoppers
Resumo:
El geoide, definido como la superficie equipotencial que mejor se ajusta (en el sentido de los mínimos cuadrados) al nivel medio del mar en una determinada época, es la superficie que utilizamos como referencia para determinar las altitudes ortométricas. Si disponemos de una superficie equipotencial de referencia como dátum altimétrico preciso o geoide local, podemos entonces determinar las altitudes ortométricas de forma eficiente a partir de las altitudes elipsoidales proporcionadas por el Sistema Global de Navegación por Satélite (Global Navigation Satellite System, GNSS ). Como es sabido uno de los problemas no resueltos de la geodesia (quizás el más importante de los mismos en la actualidad) es la carencia de un dátum altimétrico global (Sjoberg, 2011) con las precisiones adecuadas. Al no existir un dátum altimétrico global que nos permita obtener los valores absolutos de la ondulación del geoide con la precisión requerida, es necesario emplear modelos geopotenciales como alternativa. Recientemente fue publicado el modelo EGM2008 en el que ha habido una notable mejoría de sus tres fuentes de datos, por lo que este modelo contiene coeficientes adicionales hasta el grado 2190 y orden 2159 y supone una sustancial mejora en la precisión (Pavlis et al., 2008). Cuando en una región determinada se dispone de valores de gravedad y Modelos Digitales del Terreno (MDT) de calidad, es posible obtener modelos de superficies geopotenciales más precisos y de mayor resolución que los modelos globales. Si bien es cierto que el Servicio Nacional Geodésico de los Estados Unidos de América (National Geodetic Survey, NGS) ha estado desarrollando modelos del geoide para la región de los Estados Unidos de América continentales y todos sus territorios desde la década de los noventa, también es cierto que las zonas de Puerto Rico y las Islas Vírgenes Estadounidenses han quedado un poco rezagadas al momento de poder aplicar y obtener resultados de mayor precisión con estos modelos regionales del geoide. En la actualidad, el modelo geopotencial regional vigente para la zona de Puerto Rico y las Islas Vírgenes Estadounidenses es el GEOID12A (Roman y Weston, 2012). Dada la necesidad y ante la incertidumbre de saber cuál sería el comportamiento de un modelo del geoide desarrollado única y exclusivamente con datos de gravedad locales, nos hemos dado a la tarea de desarrollar un modelo de geoide gravimétrico como sistema de referencia para las altitudes ortométricas. Para desarrollar un modelo del geoide gravimétrico en la isla de Puerto Rico, fue necesario implementar una metodología que nos permitiera analizar y validar los datos de gravedad terrestre existentes. Utilizando validación por altimetría con sistemas de información geográfica y validación matemática por colocación con el programa Gravsoft (Tscherning et al., 1994) en su modalidad en Python (Nielsen et al., 2012), fue posible validar 1673 datos de anomalías aire libre de un total de 1894 observaciones obtenidas de la base de datos del Bureau Gravimétrico Internacional (BGI). El aplicar estas metodologías nos permitió obtener una base de datos anomalías de la gravedad fiable la cual puede ser utilizada para una gran cantidad de aplicaciones en ciencia e ingeniería. Ante la poca densidad de datos de gravedad existentes, fue necesario emplear un método alternativo para densificar los valores de anomalías aire libre existentes. Empleando una metodología propuesta por Jekeli et al. (2009b) se procedió a determinar anomalías aire libre a partir de los datos de un MDT. Estas anomalías fueron ajustadas utilizando las anomalías aire libre validadas y tras aplicar un ajuste de mínimos cuadrados por zonas geográficas, fue posible obtener una malla de datos de anomalías aire libre uniforme a partir de un MDT. Tras realizar las correcciones topográficas, determinar el efecto indirecto de la topografía del terreno y la contribución del modelo geopotencial EGM2008, se obtuvo una malla de anomalías residuales. Estas anomalías residuales fueron utilizadas para determinar el geoide gravimétrico utilizando varias técnicas entre las que se encuentran la aproximación plana de la función de Stokes y las modificaciones al núcleo de Stokes, propuestas por Wong y Gore (1969), Vanicek y Kleusberg (1987) y Featherstone et al. (1998). Ya determinados los distintos modelos del geoide gravimétrico, fue necesario validar los mismos y para eso se utilizaron una serie de estaciones permanentes de la red de nivelación del Datum Vertical de Puerto Rico de 2002 (Puerto Rico Vertical Datum 2002, PRVD02 ), las cuales tenían publicados sus valores de altitud elipsoidal y elevación. Ante la ausencia de altitudes ortométricas en las estaciones permanentes de la red de nivelación, se utilizaron las elevaciones obtenidas a partir de nivelación de primer orden para determinar los valores de la ondulación del geoide geométrico (Roman et al., 2013). Tras establecer un total de 990 líneas base, se realizaron dos análisis para determinar la 'precisión' de los modelos del geoide. En el primer análisis, que consistió en analizar las diferencias entre los incrementos de la ondulación del geoide geométrico y los incrementos de la ondulación del geoide de los distintos modelos (modelos gravimétricos, EGM2008 y GEOID12A) en función de las distancias entre las estaciones de validación, se encontró que el modelo con la modificación del núcleo de Stokes propuesta por Wong y Gore presentó la mejor 'precisión' en un 91,1% de los tramos analizados. En un segundo análisis, en el que se consideraron las 990 líneas base, se determinaron las diferencias entre los incrementos de la ondulación del geoide geométrico y los incrementos de la ondulación del geoide de los distintos modelos (modelos gravimétricos, EGM2008 y GEOID12A), encontrando que el modelo que presenta la mayor 'precisión' también era el geoide con la modificación del núcleo de Stokes propuesta por Wong y Gore. En este análisis, el modelo del geoide gravimétrico de Wong y Gore presento una 'precisión' de 0,027 metros en comparación con la 'precisión' del modelo EGM2008 que fue de 0,031 metros mientras que la 'precisión' del modelo regional GEOID12A fue de 0,057 metros. Finalmente podemos decir que la metodología aquí presentada es una adecuada ya que fue posible obtener un modelo del geoide gravimétrico que presenta una mayor 'precisión' que los modelos geopotenciales disponibles, incluso superando la precisión del modelo geopotencial global EGM2008. ABSTRACT The geoid, defined as the equipotential surface that best fits (in the least squares sense) to the mean sea level at a particular time, is the surface used as a reference to determine the orthometric heights. If we have an equipotential reference surface or a precise local geoid, we can then determine the orthometric heights efficiently from the ellipsoidal heights, provided by the Global Navigation Satellite System (GNSS). One of the most common and important an unsolved problem in geodesy is the lack of a global altimetric datum (Sjoberg, 2011)) with the appropriate precision. In the absence of one which allows us to obtain the absolute values of the geoid undulation with the required precision, it is necessary to use alternative geopotential models. The EGM2008 was recently published, in which there has been a marked improvement of its three data sources, so this model contains additional coefficients of degree up to 2190 and order 2159, and there is a substantial improvement in accuracy (Pavlis et al., 2008). When a given region has gravity values and high quality digital terrain models (DTM), it is possible to obtain more accurate regional geopotential models, with a higher resolution and precision, than global geopotential models. It is true that the National Geodetic Survey of the United States of America (NGS) has been developing geoid models for the region of the continental United States of America and its territories from the nineties, but which is also true is that areas such as Puerto Rico and the U.S. Virgin Islands have lagged behind when to apply and get more accurate results with these regional geopotential models. Right now, the available geopotential model for Puerto Rico and the U.S. Virgin Islands is the GEOID12A (Roman y Weston, 2012). Given this need and given the uncertainty of knowing the behavior of a regional geoid model developed exclusively with data from local gravity, we have taken on the task of developing a gravimetric geoid model to use as a reference system for orthometric heights. To develop a gravimetric geoid model in the island of Puerto Rico, implementing a methodology that allows us to analyze and validate the existing terrestrial gravity data is a must. Using altimetry validation with GIS and mathematical validation by collocation with the Gravsoft suite programs (Tscherning et al., 1994) in its Python version (Nielsen et al., 2012), it was possible to validate 1673 observations with gravity anomalies values out of a total of 1894 observations obtained from the International Bureau Gravimetric (BGI ) database. Applying these methodologies allowed us to obtain a database of reliable gravity anomalies, which can be used for many applications in science and engineering. Given the low density of existing gravity data, it was necessary to employ an alternative method for densifying the existing gravity anomalies set. Employing the methodology proposed by Jekeli et al. (2009b) we proceeded to determine gravity anomaly data from a DTM. These anomalies were adjusted by using the validated free-air gravity anomalies and, after that, applying the best fit in the least-square sense by geographical area, it was possible to obtain a uniform grid of free-air anomalies obtained from a DTM. After applying the topographic corrections, determining the indirect effect of topography and the contribution of the global geopotential model EGM2008, a grid of residual anomalies was obtained. These residual anomalies were used to determine the gravimetric geoid by using various techniques, among which are the planar approximation of the Stokes function and the modifications of the Stokes kernel, proposed by Wong y Gore (1969), Vanicek y Kleusberg (1987) and Featherstone et al. (1998). After determining the different gravimetric geoid models, it was necessary to validate them by using a series of stations of the Puerto Rico Vertical Datum of 2002 (PRVD02) leveling network. These stations had published its values of ellipsoidal height and elevation, and in the absence of orthometric heights, we use the elevations obtained from first - order leveling to determine the geometric geoid undulation (Roman et al., 2013). After determine a total of 990 baselines, two analyzes were performed to determine the ' accuracy ' of the geoid models. The first analysis was to analyze the differences between the increments of the geometric geoid undulation with the increments of the geoid undulation of the different geoid models (gravimetric models, EGM2008 and GEOID12A) in function of the distance between the validation stations. Through this analysis, it was determined that the model with the modified Stokes kernel given by Wong and Gore had the best 'accuracy' in 91,1% for the analyzed baselines. In the second analysis, in which we considered the 990 baselines, we analyze the differences between the increments of the geometric geoid undulation with the increments of the geoid undulation of the different geoid models (gravimetric models, EGM2008 and GEOID12A) finding that the model with the highest 'accuracy' was also the model with modifying Stokes kernel given by Wong and Gore. In this analysis, the Wong and Gore gravimetric geoid model presented an 'accuracy' of 0,027 meters in comparison with the 'accuracy' of global geopotential model EGM2008, which gave us an 'accuracy' of 0,031 meters, while the 'accuracy ' of the GEOID12A regional model was 0,057 meters. Finally we can say that the methodology presented here is adequate as it was possible to obtain a gravimetric geoid model that has a greater 'accuracy' than the geopotential models available, even surpassing the accuracy of global geopotential model EGM2008.
Resumo:
Una apropiada evaluación de los márgenes de seguridad de una instalación nuclear, por ejemplo, una central nuclear, tiene en cuenta todas las incertidumbres que afectan a los cálculos de diseño, funcionanmiento y respuesta ante accidentes de dicha instalación. Una fuente de incertidumbre son los datos nucleares, que afectan a los cálculos neutrónicos, de quemado de combustible o activación de materiales. Estos cálculos permiten la evaluación de las funciones respuesta esenciales para el funcionamiento correcto durante operación, y también durante accidente. Ejemplos de esas respuestas son el factor de multiplicación neutrónica o el calor residual después del disparo del reactor. Por tanto, es necesario evaluar el impacto de dichas incertidumbres en estos cálculos. Para poder realizar los cálculos de propagación de incertidumbres, es necesario implementar metodologías que sean capaces de evaluar el impacto de las incertidumbres de estos datos nucleares. Pero también es necesario conocer los datos de incertidumbres disponibles para ser capaces de manejarlos. Actualmente, se están invirtiendo grandes esfuerzos en mejorar la capacidad de analizar, manejar y producir datos de incertidumbres, en especial para isótopos importantes en reactores avanzados. A su vez, nuevos programas/códigos están siendo desarrollados e implementados para poder usar dichos datos y analizar su impacto. Todos estos puntos son parte de los objetivos del proyecto europeo ANDES, el cual ha dado el marco de trabajo para el desarrollo de esta tesis doctoral. Por tanto, primero se ha llevado a cabo una revisión del estado del arte de los datos nucleares y sus incertidumbres, centrándose en los tres tipos de datos: de decaimiento, de rendimientos de fisión y de secciones eficaces. A su vez, se ha realizado una revisión del estado del arte de las metodologías para la propagación de incertidumbre de estos datos nucleares. Dentro del Departamento de Ingeniería Nuclear (DIN) se propuso una metodología para la propagación de incertidumbres en cálculos de evolución isotópica, el Método Híbrido. Esta metodología se ha tomado como punto de partida para esta tesis, implementando y desarrollando dicha metodología, así como extendiendo sus capacidades. Se han analizado sus ventajas, inconvenientes y limitaciones. El Método Híbrido se utiliza en conjunto con el código de evolución isotópica ACAB, y se basa en el muestreo por Monte Carlo de los datos nucleares con incertidumbre. En esta metodología, se presentan diferentes aproximaciones según la estructura de grupos de energía de las secciones eficaces: en un grupo, en un grupo con muestreo correlacionado y en multigrupos. Se han desarrollado diferentes secuencias para usar distintas librerías de datos nucleares almacenadas en diferentes formatos: ENDF-6 (para las librerías evaluadas), COVERX (para las librerías en multigrupos de SCALE) y EAF (para las librerías de activación). Gracias a la revisión del estado del arte de los datos nucleares de los rendimientos de fisión se ha identificado la falta de una información sobre sus incertidumbres, en concreto, de matrices de covarianza completas. Además, visto el renovado interés por parte de la comunidad internacional, a través del grupo de trabajo internacional de cooperación para evaluación de datos nucleares (WPEC) dedicado a la evaluación de las necesidades de mejora de datos nucleares mediante el subgrupo 37 (SG37), se ha llevado a cabo una revisión de las metodologías para generar datos de covarianza. Se ha seleccionando la actualización Bayesiana/GLS para su implementación, y de esta forma, dar una respuesta a dicha falta de matrices completas para rendimientos de fisión. Una vez que el Método Híbrido ha sido implementado, desarrollado y extendido, junto con la capacidad de generar matrices de covarianza completas para los rendimientos de fisión, se han estudiado diferentes aplicaciones nucleares. Primero, se estudia el calor residual tras un pulso de fisión, debido a su importancia para cualquier evento después de la parada/disparo del reactor. Además, se trata de un ejercicio claro para ver la importancia de las incertidumbres de datos de decaimiento y de rendimientos de fisión junto con las nuevas matrices completas de covarianza. Se han estudiado dos ciclos de combustible de reactores avanzados: el de la instalación europea para transmutación industrial (EFIT) y el del reactor rápido de sodio europeo (ESFR), en los cuales se han analizado el impacto de las incertidumbres de los datos nucleares en la composición isotópica, calor residual y radiotoxicidad. Se han utilizado diferentes librerías de datos nucleares en los estudios antreriores, comparando de esta forma el impacto de sus incertidumbres. A su vez, mediante dichos estudios, se han comparando las distintas aproximaciones del Método Híbrido y otras metodologías para la porpagación de incertidumbres de datos nucleares: Total Monte Carlo (TMC), desarrollada en NRG por A.J. Koning y D. Rochman, y NUDUNA, desarrollada en AREVA GmbH por O. Buss y A. Hoefer. Estas comparaciones demostrarán las ventajas del Método Híbrido, además de revelar sus limitaciones y su rango de aplicación. ABSTRACT For an adequate assessment of safety margins of nuclear facilities, e.g. nuclear power plants, it is necessary to consider all possible uncertainties that affect their design, performance and possible accidents. Nuclear data are a source of uncertainty that are involved in neutronics, fuel depletion and activation calculations. These calculations can predict critical response functions during operation and in the event of accident, such as decay heat and neutron multiplication factor. Thus, the impact of nuclear data uncertainties on these response functions needs to be addressed for a proper evaluation of the safety margins. Methodologies for performing uncertainty propagation calculations need to be implemented in order to analyse the impact of nuclear data uncertainties. Nevertheless, it is necessary to understand the current status of nuclear data and their uncertainties, in order to be able to handle this type of data. Great eórts are underway to enhance the European capability to analyse/process/produce covariance data, especially for isotopes which are of importance for advanced reactors. At the same time, new methodologies/codes are being developed and implemented for using and evaluating the impact of uncertainty data. These were the objectives of the European ANDES (Accurate Nuclear Data for nuclear Energy Sustainability) project, which provided a framework for the development of this PhD Thesis. Accordingly, first a review of the state-of-the-art of nuclear data and their uncertainties is conducted, focusing on the three kinds of data: decay, fission yields and cross sections. A review of the current methodologies for propagating nuclear data uncertainties is also performed. The Nuclear Engineering Department of UPM has proposed a methodology for propagating uncertainties in depletion calculations, the Hybrid Method, which has been taken as the starting point of this thesis. This methodology has been implemented, developed and extended, and its advantages, drawbacks and limitations have been analysed. It is used in conjunction with the ACAB depletion code, and is based on Monte Carlo sampling of variables with uncertainties. Different approaches are presented depending on cross section energy-structure: one-group, one-group with correlated sampling and multi-group. Differences and applicability criteria are presented. Sequences have been developed for using different nuclear data libraries in different storing-formats: ENDF-6 (for evaluated libraries) and COVERX (for multi-group libraries of SCALE), as well as EAF format (for activation libraries). A revision of the state-of-the-art of fission yield data shows inconsistencies in uncertainty data, specifically with regard to complete covariance matrices. Furthermore, the international community has expressed a renewed interest in the issue through the Working Party on International Nuclear Data Evaluation Co-operation (WPEC) with the Subgroup (SG37), which is dedicated to assessing the need to have complete nuclear data. This gives rise to this review of the state-of-the-art of methodologies for generating covariance data for fission yields. Bayesian/generalised least square (GLS) updating sequence has been selected and implemented to answer to this need. Once the Hybrid Method has been implemented, developed and extended, along with fission yield covariance generation capability, different applications are studied. The Fission Pulse Decay Heat problem is tackled first because of its importance during events after shutdown and because it is a clean exercise for showing the impact and importance of decay and fission yield data uncertainties in conjunction with the new covariance data. Two fuel cycles of advanced reactors are studied: the European Facility for Industrial Transmutation (EFIT) and the European Sodium Fast Reactor (ESFR), and response function uncertainties such as isotopic composition, decay heat and radiotoxicity are addressed. Different nuclear data libraries are used and compared. These applications serve as frameworks for comparing the different approaches of the Hybrid Method, and also for comparing with other methodologies: Total Monte Carlo (TMC), developed at NRG by A.J. Koning and D. Rochman, and NUDUNA, developed at AREVA GmbH by O. Buss and A. Hoefer. These comparisons reveal the advantages, limitations and the range of application of the Hybrid Method.
Resumo:
Este estudo teve como objetivo principal analisar a relação entre a Liderança Transformacional, a Conversão do Conhecimento e a Eficácia Organizacional. Foram considerados como pressupostos teóricos conceitos consolidados sobre os temas desta relação, além de recentes pesquisas já realizadas em outros países e contextos organizacionais. Com base nisto identificou-se potencial estudo de um modelo que relacionasse estes três conceitos. Para tal considera-se que as organizações que buscam atingir Vantagem Competitiva e incorporam a Knowledge-Based View possam conquistar diferenciação frente a seus concorrentes. Nesse contexto o conhecimento ganha maior destaque e papel protagonista nestas organizações. Dessa forma criar conhecimento através de seus colaboradores, passa a ser um dos desafios dessas organizações ao passo que sugere melhoria de seus indicadores Econômicos, Sociais, Sistêmicos e Políticos, o que se define por Eficácia Organizacional. Portanto os modos de conversão do conhecimento nas organizações, demonstram relevância, uma vez que se cria e se converte conhecimentos através da interação entre o conhecimento existente de seus colaboradores. Essa conversão do conhecimento ou modelo SECI possui quatro modos que são a Socialização, Externalização, Combinação e Internalização. Nessa perspectiva a liderança nas organizações apresenta-se como um elemento capaz de influenciar seus colaboradores, propiciando maior dinâmica ao modelo SECI de conversão do conhecimento. Se identifica então na liderança do tipo Transformacional, características que possam influenciar colaboradores e entende-se que esta relação entre a Liderança Transformacional e a Conversão do Conhecimento possa ter influência positiva nos indicadores da Eficácia Organizacional. Dessa forma esta pesquisa buscou analisar um modelo que explorasse essa relação entre a liderança do tipo Transformacional, a Conversão do Conhecimento (SECI) e a Eficácia Organizacional. Esta pesquisa teve o caráter quantitativo com coleta de dados através do método survey, obtendo um total de 230 respondentes válidos de diferentes organizações. O instrumento de coleta de dados foi composto por afirmativas relativas ao modelo de relação pesquisado com um total de 44 itens. O perfil de respondentes concentrou-se entre 30 e 39 anos de idade, com a predominância de organizações privadas e de departamentos de TI/Telecom, Docência e Recursos Humanos respectivamente. O tratamento dos dados foi através da Análise Fatorial Exploratória e Modelagem de Equações Estruturais via Partial Least Square Path Modeling (PLS-PM). Como resultado da análise desta pesquisa, as hipóteses puderam ser confirmadas, concluindo que a Liderança Transformacional apresenta influência positiva nos modos de Conversão do Conhecimento e que; a Conversão do Conhecimento influencia positivamente na Eficácia Organizacional. Ainda, concluiu-se que a percepção entre os respondentes não apresenta resultado diferente sobre o modelo desta pesquisa entre quem possui ou não função de liderança.
Resumo:
La plupart des modèles en statistique classique repose sur une hypothèse sur la distribution des données ou sur une distribution sous-jacente aux données. La validité de cette hypothèse permet de faire de l’inférence, de construire des intervalles de confiance ou encore de tester la fiabilité du modèle. La problématique des tests d’ajustement vise à s’assurer de la conformité ou de la cohérence de l’hypothèse avec les données disponibles. Dans la présente thèse, nous proposons des tests d’ajustement à la loi normale dans le cadre des séries chronologiques univariées et vectorielles. Nous nous sommes limités à une classe de séries chronologiques linéaires, à savoir les modèles autorégressifs à moyenne mobile (ARMA ou VARMA dans le cas vectoriel). Dans un premier temps, au cas univarié, nous proposons une généralisation du travail de Ducharme et Lafaye de Micheaux (2004) dans le cas où la moyenne est inconnue et estimée. Nous avons estimé les paramètres par une méthode rarement utilisée dans la littérature et pourtant asymptotiquement efficace. En effet, nous avons rigoureusement montré que l’estimateur proposé par Brockwell et Davis (1991, section 10.8) converge presque sûrement vers la vraie valeur inconnue du paramètre. De plus, nous fournissons une preuve rigoureuse de l’inversibilité de la matrice des variances et des covariances de la statistique de test à partir de certaines propriétés d’algèbre linéaire. Le résultat s’applique aussi au cas où la moyenne est supposée connue et égale à zéro. Enfin, nous proposons une méthode de sélection de la dimension de la famille d’alternatives de type AIC, et nous étudions les propriétés asymptotiques de cette méthode. L’outil proposé ici est basé sur une famille spécifique de polynômes orthogonaux, à savoir les polynômes de Legendre. Dans un second temps, dans le cas vectoriel, nous proposons un test d’ajustement pour les modèles autorégressifs à moyenne mobile avec une paramétrisation structurée. La paramétrisation structurée permet de réduire le nombre élevé de paramètres dans ces modèles ou encore de tenir compte de certaines contraintes particulières. Ce projet inclut le cas standard d’absence de paramétrisation. Le test que nous proposons s’applique à une famille quelconque de fonctions orthogonales. Nous illustrons cela dans le cas particulier des polynômes de Legendre et d’Hermite. Dans le cas particulier des polynômes d’Hermite, nous montrons que le test obtenu est invariant aux transformations affines et qu’il est en fait une généralisation de nombreux tests existants dans la littérature. Ce projet peut être vu comme une généralisation du premier dans trois directions, notamment le passage de l’univarié au multivarié ; le choix d’une famille quelconque de fonctions orthogonales ; et enfin la possibilité de spécifier des relations ou des contraintes dans la formulation VARMA. Nous avons procédé dans chacun des projets à une étude de simulation afin d’évaluer le niveau et la puissance des tests proposés ainsi que de les comparer aux tests existants. De plus des applications aux données réelles sont fournies. Nous avons appliqué les tests à la prévision de la température moyenne annuelle du globe terrestre (univarié), ainsi qu’aux données relatives au marché du travail canadien (bivarié). Ces travaux ont été exposés à plusieurs congrès (voir par exemple Tagne, Duchesne et Lafaye de Micheaux (2013a, 2013b, 2014) pour plus de détails). Un article basé sur le premier projet est également soumis dans une revue avec comité de lecture (Voir Duchesne, Lafaye de Micheaux et Tagne (2016)).
Resumo:
La plupart des modèles en statistique classique repose sur une hypothèse sur la distribution des données ou sur une distribution sous-jacente aux données. La validité de cette hypothèse permet de faire de l’inférence, de construire des intervalles de confiance ou encore de tester la fiabilité du modèle. La problématique des tests d’ajustement vise à s’assurer de la conformité ou de la cohérence de l’hypothèse avec les données disponibles. Dans la présente thèse, nous proposons des tests d’ajustement à la loi normale dans le cadre des séries chronologiques univariées et vectorielles. Nous nous sommes limités à une classe de séries chronologiques linéaires, à savoir les modèles autorégressifs à moyenne mobile (ARMA ou VARMA dans le cas vectoriel). Dans un premier temps, au cas univarié, nous proposons une généralisation du travail de Ducharme et Lafaye de Micheaux (2004) dans le cas où la moyenne est inconnue et estimée. Nous avons estimé les paramètres par une méthode rarement utilisée dans la littérature et pourtant asymptotiquement efficace. En effet, nous avons rigoureusement montré que l’estimateur proposé par Brockwell et Davis (1991, section 10.8) converge presque sûrement vers la vraie valeur inconnue du paramètre. De plus, nous fournissons une preuve rigoureuse de l’inversibilité de la matrice des variances et des covariances de la statistique de test à partir de certaines propriétés d’algèbre linéaire. Le résultat s’applique aussi au cas où la moyenne est supposée connue et égale à zéro. Enfin, nous proposons une méthode de sélection de la dimension de la famille d’alternatives de type AIC, et nous étudions les propriétés asymptotiques de cette méthode. L’outil proposé ici est basé sur une famille spécifique de polynômes orthogonaux, à savoir les polynômes de Legendre. Dans un second temps, dans le cas vectoriel, nous proposons un test d’ajustement pour les modèles autorégressifs à moyenne mobile avec une paramétrisation structurée. La paramétrisation structurée permet de réduire le nombre élevé de paramètres dans ces modèles ou encore de tenir compte de certaines contraintes particulières. Ce projet inclut le cas standard d’absence de paramétrisation. Le test que nous proposons s’applique à une famille quelconque de fonctions orthogonales. Nous illustrons cela dans le cas particulier des polynômes de Legendre et d’Hermite. Dans le cas particulier des polynômes d’Hermite, nous montrons que le test obtenu est invariant aux transformations affines et qu’il est en fait une généralisation de nombreux tests existants dans la littérature. Ce projet peut être vu comme une généralisation du premier dans trois directions, notamment le passage de l’univarié au multivarié ; le choix d’une famille quelconque de fonctions orthogonales ; et enfin la possibilité de spécifier des relations ou des contraintes dans la formulation VARMA. Nous avons procédé dans chacun des projets à une étude de simulation afin d’évaluer le niveau et la puissance des tests proposés ainsi que de les comparer aux tests existants. De plus des applications aux données réelles sont fournies. Nous avons appliqué les tests à la prévision de la température moyenne annuelle du globe terrestre (univarié), ainsi qu’aux données relatives au marché du travail canadien (bivarié). Ces travaux ont été exposés à plusieurs congrès (voir par exemple Tagne, Duchesne et Lafaye de Micheaux (2013a, 2013b, 2014) pour plus de détails). Un article basé sur le premier projet est également soumis dans une revue avec comité de lecture (Voir Duchesne, Lafaye de Micheaux et Tagne (2016)).
Resumo:
Objective: Sertraline's efficacy and tolerability in treating generalized anxiety disorder were evaluated. Method: Adult outpatients with DSM-IV generalized anxiety disorder and a total score of 18 or higher on the Hamilton Anxiety Rating Scale were eligible. After a 1-week single-blind placebo lead-in, patients were randomly assigned to 12 weeks of double-blind treatment with placebo (N=188, mean baseline anxiety score=25) or flexible doses (50-150 mg/day) of sertraline (N=182, mean anxiety score=25). The primary outcome measure was baseline-to-endpoint change in the Hamilton anxiety scale total score. A secondary efficacy measure was the Clinical Global Impression (CGI) improvement score; response was defined as a score of 2 or less. Results: Sertraline patients had significantly greater improvement than placebo patients on all efficacy measures at week 4. Analysis of covariance of the intent-to-treat group at endpoint (with the last observation carried forward) showed a significant difference in the decrease from baseline of the least-square mean total score on the Hamilton anxiety scale between sertraline (mean=11.7) and placebo (mean=8.0). Significantly greater endpoint improvement with sertraline than placebo was obtained for mean scores on the Hamilton anxiety scale psychic factor (6.7 versus 4.1) and somatic factor (5.0 versus 3.9). The rate of responders, based on CGI improvement and last observation carried forward, was significantly higher for sertraline (63%) than placebo (37%). Sertraline was well tolerated; 8% of patients versus 10% for placebo dropped out because of adverse events. Conclusions: Sertraline appears to be efficacious and well tolerated in the treatment of generalized anxiety disorder.