674 resultados para Learning styles and preferences


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Perceptual learning improves perception through training. Perceptual learning improves with most stimulus types but fails when . certain stimulus types are mixed during training (roving). This result is surprising because classical supervised and unsupervised neural network models can cope easily with roving conditions. What makes humans so inferior compared to these models? As experimental and conceptual work has shown, human perceptual learning is neither supervised nor unsupervised but reward-based learning. Reward-based learning suffers from the so-called unsupervised bias, i.e., to prevent synaptic " drift" , the . average reward has to be exactly estimated. However, this is impossible when two or more stimulus types with different rewards are presented during training (and the reward is estimated by a running average). For this reason, we propose no learning occurs in roving conditions. However, roving hinders perceptual learning only for combinations of similar stimulus types but not for dissimilar ones. In this latter case, we propose that a critic can estimate the reward for each stimulus type separately. One implication of our analysis is that the critic cannot be located in the visual system. © 2011 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study investigated the relationship between statistics anxiety, individual characteristics (e.g., trait anxiety and learning strategies), and academic performance. Students enrolled in a statistics course in psychology (N=147) filled in a questionnaire on statistics anxiety, trait anxiety, interest in statistics, mathematical selfconcept, learning strategies, and procrastination. Additionally, their performance in the examination was recorded. The structural equation model showed that statistics anxiety held a crucial role as the strongest direct predictor of performance. Students with higher statistics anxiety achieved less in the examination and showed higher procrastination scores. Statistics anxiety was related indirectly to spending less effort and time on learning. Trait anxiety was related positively to statistics anxiety and, counterintuitively, to academic performance. This result can be explained by the heterogeneity of the measure of trait anxiety. The part of trait anxiety that is unrelated to the specific part of statistics anxiety correlated positively with performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Learning an input-output mapping from a set of examples can be regarded as synthesizing an approximation of a multi-dimensional function. From this point of view, this form of learning is closely related to regularization theory. In this note, we extend the theory by introducing ways of dealing with two aspects of learning: learning in the presence of unreliable examples and learning from positive and negative examples. The first extension corresponds to dealing with outliers among the sparse data. The second one corresponds to exploiting information about points or regions in the range of the function that are forbidden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Developing learning, teaching and assessment strategies that foster ongoing engagement and provide inspiration to academic staff is a particular challenge. This paper demonstrates how an institutional learning, teaching and assessment strategy was developed and a ‘dynamic’ strategy created in order to achieve the ongoing enhancement of the quality of the student learning experience. The authors use the discussion of the evolution, development and launch of the Strategy and underpinning Resource Bank to reflect on the hopes and intentions behind the approach; firstly the paper will discuss the collaborative and iterative approach taken to the development of an institutional learning, teaching and assessment strategy; and secondly, the development of open access educational resources to underpin the strategy. The paper then outlines staff engagement with the resource bank and positive outcomes which have been identified to date, identifies the next steps in achieving the ambition behind the strategy and outlines the action research and fuller evaluation which will be used to monitor progress and ensure responsive learning at institutional level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A key goal of behavioral and cognitive neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress towards explaining how the visual cortex sees. Visual cortex, like many parts of perceptual and cognitive neocortex, is organized into six main layers of cells, as well as characteristic sub-lamina. Here it is proposed how these layered circuits help to realize the processes of developement, learning, perceptual grouping, attention, and 3D vision through a combination of bottom-up, horizontal, and top-down interactions. A key theme is that the mechanisms which enable developement and learning to occur in a stable way imply properties of adult behavior. These results thus begin to unify three fields: infant cortical developement, adult cortical neurophysiology and anatomy, and adult visual perception. The identified cortical mechanisms promise to generalize to explain how other perceptual and cognitive processes work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Air Force Office of Scientific Research (F49620-01-1-0397); National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a constantly changing world, humans are adapted to alternate routinely between attending to familiar objects and testing hypotheses about novel ones. We can rapidly learn to recognize and narne novel objects without unselectively disrupting our memories of familiar ones. We can notice fine details that differentiate nearly identical objects and generalize across broad classes of dissimilar objects. This chapter describes a class of self-organizing neural network architectures--called ARTMAP-- that are capable of fast, yet stable, on-line recognition learning, hypothesis testing, and naming in response to an arbitrary stream of input patterns (Carpenter, Grossberg, Markuzon, Reynolds, and Rosen, 1992; Carpenter, Grossberg, and Reynolds, 1991). The intrinsic stability of ARTMAP allows the system to learn incrementally for an unlimited period of time. System stability properties can be traced to the structure of its learned memories, which encode clusters of attended features into its recognition categories, rather than slow averages of category inputs. The level of detail in the learned attentional focus is determined moment-by-moment, depending on predictive success: an error due to over-generalization automatically focuses attention on additional input details enough of which are learned in a new recognition category so that the predictive error will not be repeated. An ARTMAP system creates an evolving map between a variable number of learned categories that compress one feature space (e.g., visual features) to learned categories of another feature space (e.g., auditory features). Input vectors can be either binary or analog. Computational properties of the networks enable them to perform significantly better in benchmark studies than alternative machine learning, genetic algorithm, or neural network models. Some of the critical problems that challenge and constrain any such autonomous learning system will next be illustrated. Design principles that work together to solve these problems are then outlined. These principles are realized in the ARTMAP architecture, which is specified as an algorithm. Finally, ARTMAP dynamics are illustrated by means of a series of benchmark simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concepts of declarative memory and procedural memory have been used to distinguish two basic types of learning. A neural network model suggests how such memory processes work together as recognition learning, reinforcement learning, and sensory-motor learning take place during adaptive behaviors. To coordinate these processes, the hippocampal formation and cerebellum each contain circuits that learn to adaptively time their outputs. Within the model, hippocampal timing helps to maintain attention on motivationally salient goal objects during variable task-related delays, and cerebellar timing controls the release of conditioned responses. This property is part of the model's description of how cognitive-emotional interactions focus attention on motivationally valued cues, and how this process breaks down due to hippocampal ablation. The model suggests that the hippocampal mechanisms that help to rapidly draw attention to salient cues could prematurely release motor commands were not the release of these commands adaptively timed by the cerebellum. The model hippocampal system modulates cortical recognition learning without actually encoding the representational information that the cortex encodes. These properties avoid the difficulties faced by several models that propose a direct hippocampal role in recognition learning. Learning within the model hippocampal system controls adaptive timing and spatial orientation. Model properties hereby clarify how hippocampal ablations cause amnesic symptoms and difficulties with tasks which combine task delays, novelty detection, and attention towards goal objects amid distractions. When these model recognition, reinforcement, sensory-motor, and timing processes work together, they suggest how the brain can accomplish conditioning of multiple sensory events to delayed rewards, as during serial compound conditioning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The processes by which humans and other primates learn to recognize objects have been the subject of many models. Processes such as learning, categorization, attention, memory search, expectation, and novelty detection work together at different stages to realize object recognition. In this article, Gail Carpenter and Stephen Grossberg describe one such model class (Adaptive Resonance Theory, ART) and discuss how its structure and function might relate to known neurological learning and memory processes, such as how inferotemporal cortex can recognize both specialized and abstract information, and how medial temporal amnesia may be caused by lesions in the hippocampal formation. The model also suggests how hippocampal and inferotemporal processing may be linked during recognition learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brusilovsky and Millan (2007) state that learning styles are typically defined as the way people prefer to learn. Learning styles and how we learn is a vast research area and many research projects (SMILE, INSPIRE, iWeaver amongst others) attempt to incorporate these learning styles into e-Learning systems. This paper describes commonly used learning styles and how they are currently being used within the area of adaptive e-Learning. This work also builds upon current research and evaluates learning styles using criteria proposed by Sampson and Karagiannidis (2004) in order to select a suitable learning methodology for the iLearn e-Learning platform. The Sampson and Karagiannidis (2004) criteria is adapted for the purpose of the research and describes the measurability, time effectiveness and descriptiveness and prescriptiveness of the specific learning style. A suitable learning style for the iLearn e-Learning platform is then proposed within the paper and finally the research briefly introduces how the chosen learning style will be used for the proposed e-Learning platform.

Relevância:

100.00% 100.00%

Publicador: