999 resultados para Lead germanate glasses
Resumo:
Lead-Cadmium fluorosilicate stable glasses were prepared and the vitreous domain region determined in the composition diagram. Characteristic temperatures were obtained from thermal analysis and the structural studies performed illustrate clearly the role played by lead atoms in the glasses crystallization behavior and the glass-forming ability of cadmium atoms. The occurrence of either a cubic lead fluoride or a lead-cadmium fluoride solid solution in crystallizing samples was found to be dependent on Er3+ doping. The optically active ions were found to concentrate in the crystalline phase and in fact play the role of nucleating agent as suggested from X-ray diffraction and EXAFS measurements. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
A simulation of erbium-doped glass systems, which provides population density for the excited states involved in the 1.5 mu m and also for 2.7 mu m emissions when pumped around 980 nm, is presented. To describe the diode pump laser processes, a theoretical model based in a coupled system of differential rate equations was developed. The approach used and the obtained spectroscopic parameters are discussed. The materials under study are two oxide glasses, lead fluoroborate (PbO-PbF2-B2O3), and heavy metal oxide (Bi2O3 PbO-Ga2O3) and a fluoride glass (ZrF4-BaF2-LaF3-AlF3-NaF), all of them doped with Er3+. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The temperature dependence of the electrical conductivity and the F-19 nuclear magnetic resonance (NMR) of PbGeO3-PbF2CdF, glasses and glass ceramics are investigated. The measured conductivity values of the glasses are above 10(-5) Skin at 500 K, and increase with increasing lead fluoride content. Activation energies extracted from the conductivity data are in the range 0.59-0.73 eV. Results are consistent with the hypothesis that in these oxyfluoride glasses lead fluoride rich clusters are dispersed in a metagermanate based matrix providing increasing mobility pathways for conducting ions. The conductivity of a sample of the glass ceramic of composition (mol%) 60PbGeO(3-)20PbF(2)-20CdF(2) was found to be smaller than that in the corresponding glass, suggesting that there are poor ionic conducting regions in the interface between the nanometer sized crystals. The temperature dependence of the F-19 relaxation times, measured in the range 100-800 K, exhibit the qualitative features associated with high fluorine mobility in both, glass and glass ceramics materials. We suggest that de-convolution of the spin-lattice relaxation rates observed in the glass ceramics shows that the observed high temperature rate maximum is associated with the diffusional motions of the fluorine ions in beta-PbF2 crystals. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Magneto-optical rotation was measured at room temperature for glasses containing Bi2O3-CdO-GeO2 (BCG), and Bi2O3-PbO-GeO2-B2O3 (BPGP). A pulsed magnetic field between 50 and 80 KG was used to measure Faraday rotation at 632.8 nm as a function of the concentration of Bi and Cd for BCG and Bi and Pb for BPGB. Verdet constant as high as 0.162 min G-1 cm-1 at 632.8 nm for the BPGB sample with the highest concentrations of Bi and Cd was found. Verdet constant increases linearly with the heavy-metal concentration for the BPGB whereas it reaches some saturation for the BCG system. Measurements of the magneto-optical rotation at other wavelengths in the visible and the refractive index at 632.8 nm are also reported. © 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Due to their low cost and high resistance to corrosion, ceramic crucibles can be used for the melting of PBG glasses (PbO-BiO 1.5GaO 1.5). These glasses present good window transmission from ultra-violet to infrared, making their use as optical fibres promising. However, their disadvantage is the high reactivity, leading to the corrosion of different crucibles, including gold and platinum ones. In this work, the corrosion of Al 2O 3, SnO 2 and ZrO 2 crucibles after melting at temperatures varying from 850 to 1000°C, was evaluated by Scanning Electronic Microscopy (SEM) in conjunction with microanalysis by EDS. The lead diffusion profile in the crucible material was obtained. Diffusion coefficients were calculated according to the Fick and Fisher theories. Results indicated that the different crucibles presented similar behaviour: in the region near the interface, diffusion occurs in the volumetric way and in regions away from the interface, diffusion occurs through grain boundary.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
PbO-BiO 1.5-GaO 1.5-based glasses are good candidates for optical applications, because of some of their interesting characteristics, such as high refraction indices and high transmission in the ultraviolet (UV), visible (VIS), and infrared (IR) regions. A limited stage in the processing of these glasses is the corrosion that is caused by the melt in all currently used conventional crucibles, such as noble metals (platinum or gold) and Al 2O 3. The absorption of crucible material by the glass composition may reduce the transmission level, the cutoff in the UV-VIS, and IR regions, and the thermal stability. In this study, a SnO 2 crucible has been tested for PbO-BiO 1.5-GaO 1.5 molten glass. Optical and thermal analyses show, in some cases, advantages over the use of platinum and Al 2O 3 crucibles. A visible cutoff value of 474 nm has been measured, and a longer melting time (850°C for 4 h) results in a significant reduction of the O-H absorption band at 3.2 μm.
Resumo:
The Ninetyeast Ridge (NER), a north-south striking, 5,000 km long, 77 to 43 Ma chain of basaltic submarine volcanoes in the eastern Indian Ocean formed as a hotspot track created by rapid northward migration of the Indian Plate over the Kerguelen hotspot. Based on the major and trace element contents of unaltered basaltic glasses from six locations along the NER, we show that the NER was constructed by basaltic magma derived from at least three geochemically distinct mantle sources: (1) a source enriched in highly incompatible elements relative to primitive mantle like the source of the 29-24 Ma flood basalts in the Kerguelen Archipelago; (2) an incompatible element-depleted source similar to the source of Mid-Ocean Ridge Basalt (MORB) erupted along the currently active Southeast Indian Ridge (SEIR); and (3) an incompatible element-depleted source that is compositionally and mineralogically distinct from the source of SEIR MORB. Specifically, this depleted mantle source was garnet-bearing and had higher Y/Dy and Nb/Zr, but lower Zr/Sm, than the SEIR MORB source. We infer that this third source formed as a garnet-bearing residue created during a previous melting event, perhaps an initial partial melting of the mantle hotspot. Subsequently, this residue partially melted over a large pressure range, from slightly over 3 GPa to less than 1 GPa, and to a high extent (~ 30%) thereby creating relatively high SiO2 and FeO contents in some NER basalts relative to SEIR MORB.