979 resultados para Laplace transforms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Models for simulating Scanning Probe Microscopy (SPM) may serve as a reference point for validating experimental data and practice. Generally, simulations use a microscopic model of the sample-probe interaction based on a first-principles approach, or a geometric model of macroscopic distortions due to the probe geometry. Examples of the latter include use of neural networks, the Legendre Transform, and dilation/erosion transforms from mathematical morphology. Dilation and the Legendre Transform fall within a general family of functional transforms, which distort a function by imposing a convex solution.In earlier work, the authors proposed a generalized approach to modeling SPM using a hidden Markov model, wherein both the sample-probe interaction and probe geometry may be taken into account. We present a discussion of the hidden Markov model and its relationship to these convex functional transforms for simulating and restoring SPM images.©2009 SPIE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Discriminative mapping transforms (DMTs) is an approach to robustly adding discriminative training to unsupervised linear adaptation transforms. In unsupervised adaptation DMTs are more robust to unreliable transcriptions than directly estimating adaptation transforms in a discriminative fashion. They were previously proposed for use with MLLR transforms with the associated need to explicitly transform the model parameters. In this work the DMT is extended to CMLLR transforms. As these operate in the feature space, it is only necessary to apply a different linear transform at the front-end rather than modifying the model parameters. This is useful for rapidly changing speakers/environments. The performance of DMTs with CMLLR was evaluated on the WSJ 20k task. Experimental results show that DMTs based on constrained linear transforms yield 3% to 6% relative gain over MLE transforms in unsupervised speaker adaptation. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adaptation to speaker and environment changes is an essential part of current automatic speech recognition (ASR) systems. In recent years the use of multi-layer percpetrons (MLPs) has become increasingly common in ASR systems. A standard approach to handling speaker differences when using MLPs is to apply a global speaker-specific constrained MLLR (CMLLR) transform to the features prior to training or using the MLP. This paper considers the situation when there are both speaker and channel, communication link, differences in the data. A more powerful transform, front-end CMLLR (FE-CMLLR), is applied to the inputs to the MLP to represent the channel differences. Though global, these FE-CMLLR transforms vary from time-instance to time-instance. Experiments on a channel distorted dialect Arabic conversational speech recognition task indicates the usefulness of adapting MLP features using both CMLLR and FE-CMLLR transforms. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

R. Zwiggelaar and C.R. Bull, 'Optical determination of fractal dimensions using Fourier transforms', Optical Engineering 34 (5), 1325-1332 (1995)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este artículo se analiza la posición que ocupa Laplace en el desarrollo de la teoría clásica de la probabilidad. Se hace en el marco de los 200 años de la publicación del "Essai philosophique sur les probabilités". El artículo se divide en las siguientes secciones: en la primera se introducen algunas de las características de las matemáticas del periodo. En la segunda, se presentan algunos de los desarrollos fundamentales en la teoría de la probabilidad alcanzados durante los siglos XVII y XVIII. Finalmente, presentamos algunas de las principales contribuciones de Laplace. En general, se considera que con Laplace la teoría clásica de la probabilidad adquiere su forma definitiva.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solution process for diffusion problems usually involves the time development separately from the space solution. A finite difference algorithm in time requires a sequential time development in which all previous values must be determined prior to the current value. The Stehfest Laplace transform algorithm, however, allows time solutions without the knowledge of prior values. It is of interest to be able to develop a time-domain decomposition suitable for implementation in a parallel environment. One such possibility is to use the Laplace transform to develop coarse-grained solutions which act as the initial values for a set of fine-grained solutions. The independence of the Laplace transform solutions means that we do indeed have a time-domain decomposition process. Any suitable time solver can be used for the fine-grained solution. To illustrate the technique we shall use an Euler solver in time together with the dual reciprocity boundary element method for the space solution

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A methodology for rapid silicon design of biorthogonal wavelet transform systems has been developed. This is based on generic, scalable architectures for the forward and inverse wavelet filters. These architectures offer efficient hardware utilisation by combining the linear phase property of biorthogonal filters with decimation and interpolation. The resulting designs have been parameterised in terms of types of wavelet and wordlengths for data and coefficients. Control circuitry is embedded within these cores that allows them to be cascaded for any desired level of decomposition without any interface logic. The time to produce silicon designs for a biorthogonal wavelet system is only the time required to run synthesis and layout tools with no further design effort required. The resulting silicon cores produced are comparable in area and performance to hand-crafted designs. These designs are also portable across a range of foundries and are suitable for FPGA and PLD implementations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Latent semantic indexing (LSI) is a popular technique used in information retrieval (IR) applications. This paper presents a novel evaluation strategy based on the use of image processing tools. The authors evaluate the use of the discrete cosine transform (DCT) and Cohen Daubechies Feauveau 9/7 (CDF 9/7) wavelet transform as a pre-processing step for the singular value decomposition (SVD) step of the LSI system. In addition, the effect of different threshold types on the search results is examined. The results show that accuracy can be increased by applying both transforms as a pre-processing step, with better performance for the hard-threshold function. The choice of the best threshold value is a key factor in the transform process. This paper also describes the most effective structure for the database to facilitate efficient searching in the LSI system.