866 resultados para Landfill biogas
Resumo:
In this paper is proposed the use of biogas generated in the Wastewater Treatment Plant of a Dairy industry. The objective is to apply a thermoeconomic analysis to the supplementary cold water production of an absorption refrigeration system (NH3 + H2O) by the burning of such gas. The exergoeconomic analysis is carried out to allow a comparison between an absorption refrigeration system and of an equivalent compression refrigeration system that uses NH3 as work fluid. The proposed exergoeconomic model uses functional diagrams and allows one to obtain the exergetic incremental functions for each component individually and for the system as a whole. The model minimizes the exergetic manufacturing cost (EMC) which represents the cost of supplementary cold water production at 1degreesC (exergetic base) needed for this dairy's cold storage. As a conclusion, the absorption refrigeration system is better than compression refrigeration system, when the biogas cost is not considered. 2004 Elsevier Ltd. All rights reserved.
Resumo:
This article compares the efficiency of induced polarization (IP) and resistivity in characterizing a contamination plume due to landfill leakage in a typical tropical environment. The resistivity survey revealed denser electrical current flow that induced lower resistivity values due to the high ionic content. The increased ionic concentration diminished the distance of the ionic charges close to the membrane, causing a decrease in the IP phenomena. In addition, the self-potential (SP) method was used to characterize the preferential flow direction of the area. The SP method proved to be effective at determining the flow direction; it is also fast and economical. In this study, the resistivity results were better correlated with the presence of contamination (lower resistivity) than the IP (lower chargeability) data.
Resumo:
The organic fraction of urban solid residues disposed of in sanitary landfills during the decomposition yields biogas and leachate, which are sources of pollution. Leachate is a resultant liquid from the decomposition of substances contained in solid residues and it contains in its composition organic and inorganic substances. Literature shows an increase in the use of thermoanalytical techniques to study the samples with environmental interest, this way thermogravimetry is used in this research. Thermogravimetric studies (TG curves) carried out on leachate and residues shows similarities in the thermal behavior, although presenting complex composition. Residue samples were collected from landfills, composting plants, sewage treatment stations, leachate, which after treatment, were submitted for thermal analysis. Kinetic parameters were determined using the Flynn-Wall-Ozawa method. In this case they show little divergence between the kinetic parameter that can be attributed to different decomposition reaction and presence of organic compounds in different phases of the decomposition with structures modified during degradation process and also due to experimental conditions of analysis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Leachate samples from a sanitary landfill of Araraquara city and composting usine of Vila Leopoldina, São Paulo, Brazil were lyophilized to remove the water content. TG/DTG curves at different heating rates were recorded. The second step of the thermal decomposition of leachate from the Araraquara landfill (CB1), from the composting usine from Vila Leopoldina (CB2) from the organic phase extracted (FO) and aqueous phase (FA) were all kinetically evaluated using the non-isothermal method.By Flynn-Wall isoconversional method the following values were obtained: E=234 +/- 3.65 kJ mol(-1) and logA=29.7 +/- 0.58 min(-1) for CB1; E=129 +/- 1.66 kJ mol(-1) and logA=11.8 +/- 0.10 min(-1) for CB2; E=51.6 +/- 1.35 kJ mol(-1) and logA=6.09 +/- 0.09 min(-1) for FO and E=76.91 +/- 6.33 kJ mol(-1) and logA=8.88 +/- 0.7 min(-1) for FA with 95% confidence level. Applying the procedures of Malek and Koga, SB kinetic model (Sestak-Berggren) is the most appropriate to describe the decomposition of CB1, CB2, FO and FA.
Resumo:
A biophysical understanding of the MSW-to-energy facility located at the Sao Joao landfill in São Paulo is performed using emergy synthesis. The implementation of a plan for environmental compensation in fulfillment of State's requirements was also assessed. Emergy based indices are calculated to assess the environmental pressure and sustainability status of the biogas project. The study was conducted by combining the study of emergy indicators and the net emergy yield ratio to determine long-term sustainability and measure global environmental stress. The Emergy investment to the use of biogas is relatively low and profitable. The implementation of the project for environmental compensation does not change the Emergy investment significantly, but the energy recovery is high. The conclusions justify the effort invested in developing MSW-to-energy plants and are applicable for policy makers in a highly sensitive sector to achieve sustainability goals - recovery of energy.
Resumo:
The current technological development made by the absorption refrigeration system is an economic and ambient alternative in comparison to the vapor cycle, possessing an advantage that uses thermal energy that is less noble. Chillers of absorption are used widely in the air conditioned industries, because they can be set in motion through hot water vapors that burn natural gas, solar energy, biomasses amongst others instead of electricity. These systems allow it to reduce the tips of electric demand and balance the rocking of energy demand. This work has had a main objective to simulate a absorption refrigeration cycle with lithium-water bromide solution using biogas of sanitary landfill, and mixtures of this with natural gas. These results shown to the energy viability of the system burning biogas and its mixtures with natural gas in the generator, when compared with equipments that uses traditional fuels (natural gas, oil diesel, amongst others), for operation the commercial chillers with 15 kW of the refrigeration capacity and temperature of the water in the entrance of 14°C and the exit of 7°C.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fuel cells are electrochemical energy conversion devices that convert fuel and oxidant electrochemically into electrical energy, water and heat. Compared to traditional electricity generation technologies that use combustion processes to convert fuel into heat, and then into mechanical energy, fuel cells convert the hydrogen and oxygen chemical energy into electrical energy, without intermediate conversion processes, and with higher efficiency. In order to make the fuel cells an achievable and useful technology, it is firstly necessary to develop an economic and efficient way for hydrogen production. Molecular hydrogen is always found combined with other chemical compounds in nature, so it must be isolated. In this paper, the technical, economical and ecological aspects of hydrogen production by biogas steam reforming are presented. The economic feasibility calculation was performed to evaluate how interesting the process is by analyzing the investment, operation and maintenance costs of the biogas steam reformer and the hydrogen production cost achieved the value of 0.27 US$/kWh with a payback period of 8 years. An ecological efficiency of 94.95%, which is a good ecological value, was obtained. The results obtained by these analyses showed that this type of hydrogen production is an environmentally attractive route. © 2013 Elsevier Ltd.
Resumo:
This study evaluated the ethanol addition as a strategy for start-up and acclimation of a pilot scale (1300 L) anaerobic sequencing batch biofilm reactor (AnSBBR) for the treatment of municipal landfill leachate with seasonal biodegradability variations. The treatment was carried out at ambient temperature (23.8 ± 2.1 °C) in the landfill area. In a first attempt, the leachate collected directly from landfill showed to be predominantly recalcitrant to anaerobic treatment and the acclimation was not possible. In a second attempt, adding ethanol to leachate, the reactor was successfully acclimated. After acclimation, without ethanol addition, the CODTotal influent ranged from 4970 to 13040 mg L-1 and the removal efficiencies ranged from 12.1% to 70.7%. A final test was carried out increasing the ammonia and free-ammonia concentration from 2486 mgN L-1 and 184 mgN L-1 to 4519 mgN L-1 and 634 mgN L-1, respectively, with no expressive inhibition verified. The start-up strategy was found to be feasible, providing the acclimation of the biomass in the AnSBBR, and maintaining the biomass active even when the leachate was recalcitrant. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Estrategias y tecnologías disponibles para implementar programas rurales de biogas en América Latina
Resumo:
Versión en inglés disponible en Biblioteca