895 resultados para Land-use management


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Postprint

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Globally, increasing demands for biofuels have intensified the rate of land-use change (LUC) for expansion of bioenergy crops. In Brazil, the world\'s largest sugarcane-ethanol producer, sugarcane area has expanded by 35% (3.2 Mha) in the last decade. Sugarcane expansion has resulted in extensive pastures being subjected to intensive mechanization and large inputs of agrochemicals, which have direct implications on soil quality (SQ). We hypothesized that LUC to support sugarcane expansion leads to overall SQ degradation. To test this hypothesis we conducted a field-study at three sites in the central-southern region, to assess the SQ response to the primary LUC sequence (i.e., native vegetation to pasture to sugarcane) associated to sugarcane expansion in Brazil. At each land use site undisturbed and disturbed soil samples were collected from the 0-10, 10-20 and 20-30 cm depths. Soil chemical and physical attributes were measured through on-farm and laboratory analyses. A dataset of soil biological attributes was also included in this study. Initially, the LUC effects on each individual soil indicator were quantified. Afterward, the LUC effects on overall SQ were assessed using the Soil Management Assessment Framework (SMAF). Furthermore, six SQ indexes (SQI) were developed using approaches with increasing complexity. Our results showed that long-term conversion from native vegetation to extensive pasture led to soil acidification, significant depletion of soil organic carbon (SOC) and macronutrients [especially phosphorus (P)] and severe soil compaction, which creates an unbalanced ratio between water- and air-filled pore space within the soil and increases mechanical resistance to root growth. Conversion from pasture to sugarcane improved soil chemical quality by correcting for acidity and increasing macronutrient levels. Despite those improvements, most of the P added by fertilizer accumulated in less plant-available P forms, confirming the key role of organic P has in providing available P to plants in Brazilian soils. Long-term sugarcane production subsequently led to further SOC depletions. Sugarcane production had slight negative impacts on soil physical attributes compared to pasture land. Although tillage performed for sugarcane planting and replanting alleviates soil compaction, our data suggested that the effects are short-term with persistent, reoccurring soil consolidation that increases erosion risk over time. These soil physical changes, induced by LUC, were detected by quantitative soil physical properties as well as by visual evaluation of soil structure (VESS), an on-farm and user-friendly method for evaluating SQ. The SMAF efficiently detected overall SQ response to LUC and it could be reliably used under Brazilian soil conditions. Furthermore, since all of the SQI values developed in this study were able to rank SQ among land uses. We recommend that simpler and more cost-effective SQI strategies using a small number of carefully chosen soil indicators, such as: pH, P, K, VESS and SOC, and proportional weighting within of each soil sectors (chemical, physical and biological) be used as a protocol for SQ assessments in Brazilian sugarcane areas. The SMAF and SQI scores suggested that long-term conversion from native vegetation to extensive pasture depleted overall SQ, driven by decreases in chemical, physical and biological indicators. In contrast, conversion from pasture to sugarcane had no negative impacts on overall SQ, mainly because chemical improvements offset negative impacts on biological and physical indicators. Therefore, our findings can be used as scientific base by farmers, extension agents and public policy makers to adopt and develop management strategies that sustain and/or improving SQ and the sustainability of sugarcane production in Brazil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examined the relationship between land-use practices near tributary rivers in South Lake Maracaibo and the appearance of duckweed (Lemna obscura) in the lake. Four rivers were studied: The Mucujepe, Capaz, Guamo and Frio. Eight factors were assessed: rivers, sediments, erosion, soils, fertilizers, water quality, land use activities and vegetation corridors. Satellite images, official cartography, field visits and observations, water samples and personal communication with organizations involved were held to get an accurate and current assessment of the conditions. The study revealed the land-use practices surrounding the Pan-American Zone Rivers contribute to the duckweed blooming in Lake Maracaibo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fragmentation of wildlife habitat is a primary driver of global species decline. A major contributor to habitat fragmentation in the United States is rural residential development. Rural development in Colorado is occurring at rates far greater than the national average. Additionally, the lack of state-level planning control coupled with a lack of comprehensive, effective planning tools at the local level creates conditions that contribute to habitat fragmentation in many rural counties. Greater oversight and involvement in land use planning is needed by the state level to assist county governments. This study provides five recommendations to strengthen Colorado state land use policy in order to reduce habitat fragmentation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims The relationship between biodiversity and ecosystem functioning is among the most active areas of ecological research. Furthermore, enhancing the diversity of degraded ecosystems is a major goal in applied restoration ecology. In grasslands, many species may be locally absent due to dispersal or microsite limitation and may therefore profit from mechanical disturbance of the resident vegetation. We established a seed addition and disturbance experiment across several grassland sites of different land use to test whether plant diversity can be increased in these grasslands. Additionally, the experiment will allow us testing the consequences of increased plant diversity for ecosystem processes and for the diversity of other taxa in real-world ecosystems. Here we present details of the experimental design and report results from the first vegetation survey one year after disturbance and seed addition. Moreover, we tested whether the effects of seed addition and disturbance varied among grassland depending on their land use or pre-disturbance plant diversity. Methods A full-factorial experiment was installed in 73 grasslands in three regions across Germany. Grasslands were under regular agricultural use, but varied in the type and the intensity of management, thereby representing the range of management typical for large parts of Central Europe. The disturbance treatment consisted of disturbing the top 10 cm of the sward using a rotavator or rotary harrow. Seed addition consisted of sowing a high-diversity seed mixture of regional plant species. These species were all regionally present, but often locally absent, depending on the resident vegetation composition and richness of each grassland. Important findings One year after sward disturbance it had significantly increased cover of bare soil, seedling species richness and numbers of seedlings. Seed addition had increased plant species richness, but only in combination with sward disturbance. The increase in species richness, when both seed addition and disturbance was applied, was higher at high land-use intensity and low resident diversity. Thus, we show that at least the early recruitment of many species is possible also at high land-use intensity, indicating the potential to restore and enhance biodiversity of species-poor agricultural grasslands. Our newly established experiment provides a unique platform for broad-scale research on the land-use dependence of future trajectories of vegetation diversity and composition and their effects on ecosystem functioning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Report of the Illinois Land Resources Management Study Commission."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates how demographic (socioeconomic) and land-use (physical and environmental) data can be integrated within a decision support framework to formulate and evaluate land-use planning scenarios. A case-study approach is undertaken with land-use planning scenarios for a rapidly growing coastal area in Australia, the Shire of Hervey Bay. The town and surrounding area require careful planning of the future urban growth between competing land uses. Three potential urban growth scenarios are put forth to address this issue. Scenario A ('continued growth') is based on existing socioeconomic trends. Scenario B ('maximising rates base') is derived using optimisation modelling of land-valuation data. Scenario C ('sustainable development') is derived using a number of social, economic, and environmental factors and assigning weightings of importance to each factor using a multiple criteria analysis approach. The land-use planning scenarios are presented through the use of maps and tables within a geographical information system, which delineate future possible land-use allocations up until 2021. The planning scenarios are evaluated by using a goal-achievement matrix approach. The matrix is constructed with a number of criteria derived from key policy objectives outlined in the regional growth management framework and town planning schemes. The authors of this paper examine the final efficiency scores calculated for each of the three planning scenarios and discuss the advantages and disadvantages of the three land-use modelling approaches used to formulate the final scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An expanding human population and associated demands for goods and services continues to exert an increasing pressure on ecological systems. Although the rate of expansion of agricultural lands has slowed since 1960, rapid deforestation still occurs in many tropical countries, including Colombia. However, the location and extent of deforestation and associated ecological impacts within tropical countries is often not well known. The primary aim of this study was to obtain an understanding of the spatial patterns of forest conversion for agricultural land uses in Colombia. We modeled native forest conversion in Colombia at regional and national-levels using logistic regression and classification trees. We investigated the impact of ignoring the regional variability of model parameters, and identified biophysical and socioeconomic factors that best explain the current spatial pattern and inter-regional variation in forest cover. We validated our predictions for the Amazon region using MODIS satellite imagery. The regional-level classification tree that accounted for regional heterogeneity had the greatest discrimination ability. Factors related to accessibility (distance to roads and towns) were related to the presence of forest cover, although this relationship varied regionally. In order to identify areas with a high risk of deforestation, we used predictions from the best model, refined by areas with rural population growth rates of > 2%. We ranked forest ecosystem types in terms of levels of threat of conversion. Our results provide useful inputs to planning for biodiversity conservation in Colombia, by identifying areas and ecosystem types that are vulnerable to deforestation. Several of the predicted deforestation hotspots coincide with areas that are outstanding in terms of biodiversity value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

South Florida continues to become increasingly developed and urbanized. My exploratory study examines connections between land use and water quality. The main objectives of the project were to develop an understanding of how land use has affected water quality in Miami-Dade canals, and an economic optimization model to estimate the costs of best management practices necessary to improve water quality. Results indicate Miami-Dade County land use and water quality are correlated. Through statistical factor and cluster analysis, it is apparent that agricultural areas are associated with higher concentrations of nitrogen, while urban areas commonly have higher levels of phosphorous than agricultural areas. The economic optimization model shows that urban areas can improve water quality by lowering fertilizer inputs. Agricultural areas can also implement methods to improve water quality although it may be more expensive than urban areas. It is important to keep solutions in mind when looking towards future water quality improvements in South Florida.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Landnutzungsänderungen sind eine wesentliche Ursache von Treibhausgasemissionen. Die Umwandlung von Ökosystemen mit permanenter natürlicher Vegetation hin zu Ackerbau mit zeitweise vegetationslosem Boden (z.B. nach der Bodenbearbeitung vor der Aussaat) führt häufig zu gesteigerten Treibhausgasemissionen und verminderter Kohlenstoffbindung. Weltweit dehnt sich Ackerbau sowohl in kleinbäuerlichen als auch in agro-industriellen Systemen aus, häufig in benachbarte semiaride bis subhumide Rangeland Ökosysteme. Die vorliegende Arbeit untersucht Trends der Landnutzungsänderung im Borana Rangeland Südäthiopiens. Bevölkerungswachstum, Landprivatisierung und damit einhergehende Einzäunung, veränderte Landnutzungspolitik und zunehmende Klimavariabilität führen zu raschen Veränderungen der traditionell auf Tierhaltung basierten, pastoralen Systeme. Mittels einer Literaturanalyse von Fallstudien in ostafrikanischen Rangelands wurde im Rahmen dieser Studie ein schematisches Modell der Zusammenhänge von Landnutzung, Treibhausgasemissionen und Kohlenstofffixierung entwickelt. Anhand von Satellitendaten und Daten aus Haushaltsbefragungen wurden Art und Umfang von Landnutzungsänderungen und Vegetationsveränderungen an fünf Untersuchungsstandorten (Darito/Yabelo Distrikt, Soda, Samaro, Haralo, Did Mega/alle Dire Distrikt) zwischen 1985 und 2011 analysiert. In Darito dehnte sich die Ackerbaufläche um 12% aus, überwiegend auf Kosten von Buschland. An den übrigen Standorten blieb die Ackerbaufläche relativ konstant, jedoch nahm Graslandvegetation um zwischen 16 und 28% zu, während Buschland um zwischen 23 und 31% abnahm. Lediglich am Standort Haralo nahm auch „bare land“, vegetationslose Flächen, um 13% zu. Faktoren, die zur Ausdehnung des Ackerbaus führen, wurden am Standort Darito detaillierter untersucht. GPS Daten und anbaugeschichtlichen Daten von 108 Feldern auf 54 Betrieben wurden in einem Geographischen Informationssystem (GIS) mit thematischen Boden-, Niederschlags-, und Hangneigungskarten sowie einem Digitales Höhenmodell überlagert. Multiple lineare Regression ermittelte Hangneigung und geographische Höhe als signifikante Erklärungsvariablen für die Ausdehnung von Ackerbau in niedrigere Lagen. Bodenart, Entfernung zum saisonalen Flusslauf und Niederschlag waren hingegen nicht signifikant. Das niedrige Bestimmtheitsmaß (R²=0,154) weist darauf hin, dass es weitere, hier nicht erfasste Erklärungsvariablen für die Richtung der räumlichen Ausweitung von Ackerland gibt. Streudiagramme zu Ackergröße und Anbaujahren in Relation zu geographischer Höhe zeigen seit dem Jahr 2000 eine Ausdehnung des Ackerbaus in Lagen unter 1620 müNN und eine Zunahme der Schlaggröße (>3ha). Die Analyse der phänologischen Entwicklung von Feldfrüchten im Jahresverlauf in Kombination mit Niederschlagsdaten und normalized difference vegetation index (NDVI) Zeitreihendaten dienten dazu, Zeitpunkte besonders hoher (Begrünung vor der Ernte) oder niedriger (nach der Bodenbearbeitung) Pflanzenbiomasse auf Ackerland zu identifizieren, um Ackerland und seine Ausdehnung von anderen Vegetationsformen fernerkundlich unterscheiden zu können. Anhand der NDVI Spektralprofile konnte Ackerland gut Wald, jedoch weniger gut von Gras- und Buschland unterschieden werden. Die geringe Auflösung (250m) der Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI Daten führte zu einem Mixed Pixel Effect, d.h. die Fläche eines Pixels beinhaltete häufig verschiedene Vegetationsformen in unterschiedlichen Anteilen, was deren Unterscheidung beeinträchtigte. Für die Entwicklung eines Echtzeit Monitoring Systems für die Ausdehnung des Ackerbaus wären höher auflösende NDVI Daten (z.B. Multispektralband, Hyperion EO-1 Sensor) notwendig, um kleinräumig eine bessere Differenzierung von Ackerland und natürlicher Rangeland-Vegetation zu erhalten. Die Entwicklung und der Einsatz solcher Methoden als Entscheidungshilfen für Land- und Ressourcennutzungsplanung könnte dazu beitragen, Produktions- und Entwicklungsziele der Borana Landnutzer mit nationalen Anstrengungen zur Eindämmung des Klimawandels durch Steigerung der Kohlenstofffixierung in Rangelands in Einklang zu bringen.