991 resultados para Lake ecology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phytoplankton productivity is the common and important factor being considered in determining the overall status of a given body of water. This is because they are found at the base of an energy or food chain, being the basic source of primary food in a given aquatic system. Hence, information on their contribution is essential in indicating how much biomass energy will be available to all other living resources in the system. Though the primary productivity of shallow lakes is characterized by mixed populations of phytoplankton and submersed aquatic vegetation in the open water. Lake Choghakhor, is a shallow lake, located in Chaharmahal-Bakhtiyari Province. This lake is the most important ecosystem in the region especially for waterfowl populations, has a recreational value and supports tourism and fisheries. During last decade Choghakhor has been influenced by some man-made impacts such as water level fluctuation, agricultural discharge and fish (Cyprinids) introduction causing a serious problem in its trophic states. So water quality for physical, chemical and biological was monitored in five sampling stations, from April 2003 to March 2004. As biological parameters we studied phytoplankton, epiphytic algae, and zooplankton and macrobenthose community structure. Chlorophyll a content for phytoplankton and epiphytes was measured to estimate production of these groups (biomass over time). Also we determined biomasses of submersed macrophytes and macrobenthose and primary production of phytoplankton (dark and light bottles technique) to estimate fish production. The results of this study showed Lake Choghakhor did not undergo stable thermal and oxygen stratification, and the lake water was mixed throughout the study (the lake mixing regime is polymictic). Now submerged plants especially Myriophyllum spicatum has covered almost the entire lake and dense macrophyte beds (Polygonom amphibium), located on the east southern end of the lake appear to act as a sink for these nutrients. Lake Choghakhor appeared to be in a macrophyte dominated clear water state with low TP (annual mean: 24± 15μg.l-1) and chlorophyll a (annual mean: 3±1.28μg.l-1) concentrations and very high Secchi depth. The grazing pressure of dominant pelagic filtering zooplankton Daphnia longespina did not seem to be significant in determining the low phytoplankton crop expressed as chlorophyll a. We expect that sequestering of nutrients by submerged plants and associated epiphytes are the dominant stabilizing mechanisms suppressing the phytoplankton crop of Lake Choghakhor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surveys on migratory waterbirds and their habitats at Lashihai Lake, China, were conducted from October 1999 to April 2000. Five fixed points, representing different degrees of habitat disturbance and quality, were selected around the lake. We used counts (n = 30) to compare diversity and abundance of waterbirds at each point and evaluate the effects of habitat disturbance. The distribution of waterbirds was affected by disturbance, with snore than one-third of the total species and nearly half of the total individuals occurring at the least disturbed point. Species richness was weakly and abundance was strongly correlated to habitat disturbance, but not to habitat quality. Habitat destruction and use of canoes were prominent at the lake. Naxi ethnic fishermen (n = 37) were interviewed. They caught 570 waterbirds between October 1999 and March 2000 in fishing nets. An estimation of the total number of waterbirds been trapped on the lake is 6164. Diving species were most susceptible. Conservation measures that should implement immediately include the cessation of habitat destruction, better plan for the development of tourism, a reduction in the number of canoes and zoning of the non-fishing area. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water hyacinth is a free-floating waterweed native to the Amazon River Basin in South America. In its native range, water hyacinth is not an environmental problem, although the weed is one of the most invasive alien plants in freshwater environments. Water hyacinth has the potential to become invasive through fast vegetative reproduction and rapid growth to accumulate huge biomass and extensive cover in freshwater environments. Over the last 150 years water hyacinth has invaded most countries in the tropics and sub-tropics, introduced by man, mainly for ornamental purposes. Such introductions led to the infestation of most freshwater-ways in the southern United States of America, parts of Australia, the pacific islands, and most countries in Asia and Africa. The extensive tightly packed mats of water hyacinth are often associated with devastating socio-economic and environmental impacts. Invasion by the weed has, therefore, often generated urgent costly problems associated with the weed biomass and its management. A classic example of such problems was triggered by the invasion and proliferation of water hyacinth in the Lake Victoria Basin during the 1980s (Freilink 1989, Taylor 1993, Twongo et al., 1995). The weed infestation marked the beginning of a decade of intensive and systematic campaign by the three riparian states (Kenya, Tanzania and Uganda) to bring weed proliferation under control. The discussions in this Chapter span over ten years of dealing with the challenges paused by the imperative to manage infestations of water hyacinth in the Lake Victoria Basin. The challenges included the need to understand the dynamics of water hyacinth infestation; its distribution, proliferation and impact modalities; and the development and implementation of appropriate weed control strategies and options. Most specific examples were taken from the Ugandan experience (NARO, 2002).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite their ecological and socio-economic importance, Lake Victoria's adjoining "swamps" and lake interface are among the least investigated parts of the lake. The "swamps" a term commonly equated to "wastelands" and the difficult working environment they present in comparison to open water, are major factors for the low level of attention accorded to shoreline wetlands. Moreover, definitions of wetlands highlighted for example in the Ramsar Convention as "areas of marsh, fern, peatland or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh or brackish, or salt, including areas of marine water, the depth of which does not exceed six metres" (Ramsar, 1971) were designed to protect birds (water fowl) of international importance. The Ramsar definition, which also includes oceans, has till recently been of limited use for Lake Victoria, because itdoes not fully recognise wetlands in relation to other public concerns such as water quality, biodiversity and the tisheries that are of higher socioeconomic priority than waterfowl. Prior to 1992, fishery research on Lake Victoria included studies of inshore shallow habitats of the lake without specific reference to distance or the type of vegetation at the shore. Results of these studies also conveniently relied heavily on trawl and gill net data from the 5-10 m depth zones as the defining boundary of shallow inshore habitats. In Lake Victoria, such a depth range can be at least one kilometre from the lake interface and by the 10m depth contour, habitats are in the sub-littoral range. Findings from these studies could thus not be used to make direct inferences on the then assumed importance of Lake Victoria wetlands in general.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aquatic macro-invertebrates encompass all those organisms that be seen with unaided eyes. Most macro-invertebrates are categorised as semi-aquatic in that they are aquatic in early stages, but live as terrestrial organisms as adults, while others like gastropods, bivalves, Oligochaetae, Hirudinae and ostracods are exclusively aquatic. Some of them such as mayflies lay eggs in water and subsequent stages also live in water until adulthood when they emerge to live a terrestrial life. In others, eggs are laid near the water, while some like members of Tendipedidae (midges) lay their eggs on the leaves of aquatic macrophytes and after hatching their larvae creep into water

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The shore margins of Lakes in the Victoria basin are highly dented and mostly swampy, fringed by Papyrus and other wetland vegetation types important habitats for herpetofauna and wetland adapted mammals. Of recent, the extent of the 'wetland' has been extended in several places by the Water Hyacinth (Eichornia cryaseps). Ecologically, amphibians are important in many ways; they are mostly predators, acting as primary and secondary carnivores. Their prey consists mostly of insects, some of which are pests to crops or disease vectors. They are also inter-inked in food chains, often acting as food for other vertebrates, such as pigs, birds, snakes and sometimes man. Because of their ectothermic physiology, the life history and ecology of amphibians often differ markedly from that of birds or mammals (McCollough el ai, (992).Amphibians are known to be an easily recognisable taxon in given habitats; and populations are sometimes specialised within a narrow habitat. This makes it easy and practical to monitor changes in composition over time, given different onditions (Heyer el al 1994, Phillips 1990). Impacts on their habitat are reflected in changes in numbers and species diversity in a short time. These are some of the factors that have made amphibians to be recognised, nowadays, as good indicators of habitat change

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Food and feeding, condition factor, breeding periods, growth and size at first maturity of a small pelagic cyprinid Rastrineobola argentea (P.) in Lake Victoria are determined. Fishing gears and methods that have been used in the exploitation of the species and could be harmful to the fishery are outlined. Management measures leading to possible sustainable exploitation of the fishery are suggested. Adult R. argentea feed on zooplankton during daytime. Juveniles feed on planktonic early instars of lakefly larvae. Although the species breeds throughout the year, two breeding peaks were observed during the drier months of August and December January. Least breeding was observed in the rainy months of April-May and October November. Fishes from the open water station at Bugaia showed higher numbers of breeding individuals than those from inshore areas. The mean monthly condition factor of fish from Napoleon Gulf confirmed breeding peaks as obtained from the number of fish with ripe gonads. The species showed a mean instantaneous growth rate (K) of 1.75 and attains length infinity (Lx) of 54mm. Females of the species in these waters show a reduced size at maturity as compared to ten years ago when exploitation of the species was at minimal levels. The males have however not changed much.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rastrineobola argentea, local name.s Mukene (Uganda) Omena (Kenya) and Dagaa (Tanzania) occurs in lakes Victoria, Kyoga and Nabugabo (Greenwood 1966). Until the decline of the native fishes especially the haplochromines, R. argentea was of little economic importance to the fisheries of these lakes. The stocks of this species have now increased and commercial catches on Lake Victoria account for over 30%. Fishing for R. argentea is currently still restricted to inshore areas and within the fringing islands of Lake Victoria. This fishery is not yet established on Lakes Kyoga and Nabugabo although the species is quite abundant in these lakes (Proude 1963). On moonless nights, kerosene pressure lamps are exposed on the lake to attract the fishes. These fishes are then fished out using fine meshed seine, lampara or lift nets

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Victoria and Kyoga lake basins had a high fish species diversity with many fish species that were found only in these lakes. Two Tilapiines species Oreochromis esculentus and Oreochromis variabilis were the most important commercial species in these lakes and were found nowhere else on earth except in the Victoria and Kyoga lake basins (Graham 1929, Worthington 1929). Lakes Kyoga and Nabugabo also had endemic haplochromine species (Worthington 1929, Trewavas 1933, Greenwood 1965, 1966). As stocks of introduced species increased, stocks of most of the native species declined rapidly or disappeared altogether. The study was carried out on Lakes Victoria and Kyoga, River Nile, some selected satellite lakes from the two basins namely Lakes Mburo, Kachera, Wamala, Kayanja, Kayugi, Nabugabo, Victoria, Victoria nile and River Sio(Victoria lake basin). Lakes Kyoga (Iyingo), Nawampasa, Nakuwa, Gigati, Nyaguo, Agu, Kawi and Lemwa (Kyoga lake basin). Species composillon and relative abundance of fishes were estimated by detennining the overall average total number of each species encountered. A trophic consists of species using the same food category. Shannon-Weaver Index of diversity H (Pielou, 1969) and number of trophic groups, were used to estimate the Trophic diversity of various fish species in the lakes. Food analysis has been done on some fishes in some of the sampled lakes and is still going on, on remaining fishes and in some lakes. Generally fish ingested detritus, Spirulina, Melosira, filamentous algae, Planktolyngbya, Microcysists, Anabaena, Merismopedia, Spirogyra, higher plant material, rotifers, Ostracodes, Chironomid larvae and pupae, Choaborus larvae, Odonata, Povilla, Insect remains, Caridina, fish eggs and fish. Eight trophic groups were identified from thes food items ingestes. These included detritivores, algae eaters, higher plant eaters, zooplanktivores, insectivores, molluscivores, prawn eaters, paedophages and piscivores. Trophic diversity by number of trophic groups was highest in Lake Kyoga (6) followed by lakes Kayugi, Nabugabo, River Nile and Mburo (3) and the lowest number was recorded in kachera (2).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oreochromis niloticus (the Nile tilapia) and three other ti1apine species: Oreochromis leucostictus, Tilapia zi11ii and T. rendallii were introduced into Lakes Victoria, Kyoga and Nabugabo in 1950s and 1960s. The source and foci of the stockings are given by Welcomme (1966) but the origin of the stocked species was Lake Albert. The Nile tilapia was introduced as a management measure to relieve fishing pressure on the endemic tiapiines and, since it grows to a bigger size, to encourage a return to the use of larger mesh gill nets. Ti1apia zillii was introduced to fill a vacant ,niche of macrophytes which could not be utilised' by the other tilapiines. Tilapia rendallii, and possibly T. leucosticutus could been introduced into these lakes accidently as a consquence of one of the species being tried out for aquaculture. The Nile perch and Nile tilapia have since fully established themselves and presently dominate the commercial fisheries of Lakes Victoria and Kyoga. The original fisheries based on the endemic tilapiines O. escu1entus and o. variabilis have collapsed. It is hypothesized that the ecological and limnological changes that are observed in Lakes Victoria and Kyoga are due to a truncation of the original food webs of the two lakes. Under the changed conditions, O. niloticus to be either playing a stabilizing role or fuelling nutrient turnover in the lakes. Other testable hypotheses point to the possible role of predation by the Nile perch, change in regional climate and hydrology in the lake basins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lakes Victoria, Kyoga and Nabugabo had a similar native fish fauna of high species diversity. stocks of most of the native species declined rapidly and some completely disappeared after Nile perch was introduced and became well established. Although, overexploitation of the fish stocks, competition between introduced and native tilapiines and environmental degradation contributed to the reduction in fish stocks, predation by the Nile perch has contributed much to the recent drastic reductions in fish stock and could even drive the stocks to a total collapse. Nile perch is also currently the most important commercial species in Lakes victoria, Kyoga and Nabugabo and the stability of its stocks is important in the overall sustainability of the fisheries of these lakes. The question that was to be examined in this paper was whether the fisheries of Lakes Victoria, Kyogaand Nabugabo would stabilize and sustain production in the presence of high predation pressure by the Nile perch or whether the Nile perch would drive the fish stocks including itself to a collapse. I t was assumed that Nile perch driven changes in Lakes Victoria, Kyoga and Nabugabo would be driven to a level beyond which they would not change further. This would be followed by recovery and stability or the changes would continue to a point of collapse. It was assumed that Lake Albert represented the ideal stable state. The changes in the new habitats expected to be driven through a major change due to Nile perch predation to a stage where there would be no further changes. After this, a feedback mechanism would move the driven variable towards recovery. The variables would then stabilize and oscillate will an amplitude which approximates to what would be recorded in Lake Albert. Alternatively, the changes would proceed to a stage where the fishery would collapse. The specific hypothesis was that fish species composition and diversity, prey selection by the Nile perch and life history characteristics of the Nile perch in the new habitats would change and stabilize

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Haplochrmine cichlids were the most abundant taxa in Lakes Victoria, Kyoga and Nabugabo prior to introduction of the Nile perch. As stocks of the introduced predator increased, these taxa were depleted to such an extent that they are now virtually absent from the lake. The haplochromine cichlids played an important role in the ecology of Lakes Victoria, Kyoga and Nabugabo. They occupied virtually all trophic levels in the lake and facilitated an efficient flow of energy through the ecosystem. Their depletion seem to have left much organic matter whose decomposition has contributed to accumulation of dead organic matter which may be contributing to prolonged anoxia in Lake Victoria. The haplochromines formed an important small-scale fishery. Fishermen formerly subsisting on this fishery have been driven out of business because they cannot afford the expensive nets required for Nile perch fishery. In addition to providing a cheap source of fish protein to humans, the species were an important source of Scientific material for students of genetics antd adaptive radiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rapid proliferation and extensive spread of water hyacinth Eichhornia crassipes (Mart) Solms in the highland lakes of the Nile Basin within less than 15 years of introduction into the basin in the 1980s pauses potential environmental and social economic menace if the noxious weed is not controlled soon. The water weed has spread all round Lake Victoria and, in Uganda where infes tation is mos t severe, water hyacinth estimated at 1,330,000 ton smothers over 2,000 ha of the lakeshore (August,1994). Lake Kyoga which already constantly supplies River Nile with the weed is infested with over 570 ha, while over 80% of the river course in Uganda is fringed on either side with an average width of about 5m of water hyacinth. As the impact of infestation with water hyacinth on water quality and availability, transportation by water, fishing activities, fisheries ecology, hydro-power generation etc becomes clear in Uganda, serious discussion is under way on how to control and manage the noxious weed. This paper pauses some of the questions being asked regarding the possible application of mechanical and chemical means to control the water weed.Uganda has already initiated the use of biological control of water hyacinth on Lake Kyoga with a strategy to use two weevils namely Neochetinabruchi and Neochetina eichhorniae. The strategy to build capacity and infrastructure for mass multiplication and deployment of biological control of the weevils in the field developed in Uganda by the Fisheries Research Insti tu te (FIRI) and the Namulonge Agricultural and Animal production Research Insti tute (NAARI) is proposed in outline for evaluation. Plans to deploy this strategy on lake Kyoga are under way

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Lake Victoria ecosystem has experienced changes associated fishing levels, arise in lake level of the 1960s, fish introductions and human activities in the drainage basin. Following the fish introductions of the 1950s and 1960s, niloticus has become the most abundant and commercially important species among the tilapiines. It appears to be the only species which has managed to co-exist with the Nile perch not only in Lake Victoria but also in Lake Kyoga where the two species were also introduced. There is, however, little published information on the biology and ecology of the species in the habitats. It has therefore been found necessary to initiate studies as have been developed for Lates niloticus, especially as the two species have assumed major role in the lake's fisheries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both in terms of commercial landings and biological importance, the Nile Perch is one of the most prominent fish in Lake Albert. It can bear considerable further exploitation, is the source of stockings elsewhere, and it is, therefore, important to know whether more than one species is being dealt with, and, if so, what differences there are in the ecology of the different species.