792 resultados para LUGOLS IODINE VILI
Resumo:
PURPOSE: To prospectively quantify in vitro the influence of gadopentetate dimeglumine and ioversol on the magnetic resonance (MR) imaging signal observed with a variety of musculoskeletal pulse sequences to predict optimum gadolinium concentrations for direct MR arthrography at 1.5 and 3.0 T. MATERIALS AND METHODS: In an in vitro study, T1 and T2 relaxation times of three dilution series of gadopentetate dimeglumine (concentration, 0-20.0 mmol gadolinium per liter) at ioversol concentrations with iodine concentration of 0, 236.4, and 1182 mmol iodine per liter (corresponding to 0, 30, and 150 mg of iodine per milliliter) were measured at 1.5 and 3.0 T. The relaxation rate dependence on concentrations of gadolinium and iodine was analytically modeled, and continuous profiles of signal versus gadolinium concentration were calculated for 10 pulse sequences used in current musculoskeletal imaging. After fitting to experimental discrete profiles, maximum signal-to-noise ratio (SNR), gadolinium concentration with maximum SNR, and range of gadolinium concentration with 90% of maximum SNR were derived. The overall influence of field strength and iodine concentration on these parameters was assessed by using t tests. The deviation of simulated from experimental signal-response profiles was assessed with the autocorrelation of the residuals. RESULTS: The model reproduced relaxation rates of 0.37-38.24 sec(-1), with a mean error of 4.5%. Calculated SNR profiles matched the discrete experimental profiles, with autocorrelation of the residuals divided by the mean of less than 5.0. Admixture of ioversol consistently reduced T1 and T2, narrowed optimum gadolinium concentration ranges (P = .004-.006), and reduced maximum SNR (P < .001 to not significant). Optimum gadolinium concentration was 0.7-3.4 mmol/L at both field strengths. At 3.0 T, maximum SNR was up to 75% higher than at 1.5 T. CONCLUSION: Admixture of ioversol to gadopentetate dimeglumine solutions results in a consistent additional relaxation enhancement, which can be analytically modeled to allow a near-quantitative a priori optimized match of contrast media concentrations and imaging protocol for a broad variety of pulse sequences.
Resumo:
PLACENTAL URIC ACID TRANSPORTER GLUT9 IS MODULATED BY FREE IODINE Objectives: Materno-fetal transplacental transport is crucial for the fetal well-being. The altered expression of placental transport proteins under specific pathophysiological conditions may affect the intrauterine environment. Pre-eclampsia is often associated with high maternal uric acid serum levels. The regulation of the placental uric transport system and its transporter glucose transporter (GLUT)-9 are not fully understood yet. The aim of this study was to investigate the placental urate transport and to characterize its transporter GLUT9. Methods: In this study we used a transepithelial transport (Transwell®) model to assess uric acid transport activity. Electrophysiological techniques and radioactive ligand up-take assays were used to measure transport activity of GLUT9 expressed in Xenopus oocytes. Results: In the Transwell/model uric acid is transported across the BeWo choriocarcinoma cell monolayer with 530 pmol/min at the linear stage. We could successfully over-express GLUT9 using the Xenopus laevis oocytes expression system. Chloride modulates the urate transport system: interestingly replacing chloride with iodine resulted in a complete loss of urate transport activity.We determined the IC50 of iodine at 30uM concentration. In radioactive up-take experiments iodinehad noeffect on uric acid transport. Conclusions: In vitro the “materno-fetal” transport of uric acid is slow. This indicates that in vivo the child is protected from short-term fluctuations of maternal uric acid serum concentrations. The different results regarding iodine-mediated regulation of GLUT9 transport activity between electrophysiological and radioactive ligand uptake experiments may suggest that iodine does not directly inhibit uric acid transport, but changes the mode of up-take from an electrogenic to an electroneutral transport. GLUT9 is not an uric acid uniporter, there are more ions involved in the transport. This may allow regulating uric acid transport by the change from an active to a passive transport.
Resumo:
Sample preparation procedures for AMS measurements of 129I and 127I in environmental materials and some methodological aspects of quality assurance are discussed. Measurements from analyses of some pre-nuclear soil and thyroid gland samples and of a systematic investigation of natural waters in Lower Saxony, Germany, are described. Although the up-to-now lowest 129I/127I ratios in soils and thyroid glands were observed, they are still suspect to contamination since they are significantly higher than the pre-nuclear equilibrium ratio in the marine hydrosphere. A survey on all available 129I/127I isotopic ratios in precipitation shows a dramatic increase until the middle of the 1980s and a stabilization since 1987 at high isotopic ratios of about (3.6–8.3)×10−7. In surface waters, ratios of (57–380)×10−10 are measured while shallow ground waters show with ratios of (1.3–200)×10−10 significantly lower values with a much larger spread. The data for 129I in soils and in precipitation are used to estimate pre-nuclear and modern 129I deposition densities.
Resumo:
The long-lived radionuclide 129I (T 1/2 = 15.7 My) occurs in the nature in very low concentrations. Since the middle of our century the environmental levels of 129I have been dramatically changed as a consequence of civil and military use of nuclear fission. Its investigation in environmental materials is of interest for environmental surveillance, retrospective dosimetry and for the use as a natural and man-made fracers of environmental processes. We are comparing two analytical methods which presently are capable of determining 129I in environmental materials, namely radiochemical neutron activation analysis (RNAA) and accelerator mass spectrometry (AMS). Emphasis is laid upon the quality control and detection capabilities for the analysis of 129I in environmental materials. Some applications are discussed.
Resumo:
Accurate calculation of absorbed dose to target tumors and normal tissues in the body is an important requirement for establishing fundamental dose-response relationships for radioimmunotherapy. Two major obstacles have been the difficulty in obtaining an accurate patient-specific 3-D activity map in-vivo and calculating the resulting absorbed dose. This study investigated a methodology for 3-D internal dosimetry, which integrates the 3-D biodistribution of the radionuclide acquired from SPECT with a dose-point kernel convolution technique to provide the 3-D distribution of absorbed dose. Accurate SPECT images were reconstructed with appropriate methods for noise filtering, attenuation correction, and Compton scatter correction. The SPECT images were converted into activity maps using a calibration phantom. The activity map was convolved with an $\sp{131}$I dose-point kernel using a 3-D fast Fourier transform to yield a 3-D distribution of absorbed dose. The 3-D absorbed dose map was then processed to provide the absorbed dose distribution in regions of interest. This methodology can provide heterogeneous distributions of absorbed dose in volumes of any size and shape with nonuniform distributions of activity. Comparison of the activities quantitated by our SPECT methodology to true activities in an Alderson abdominal phantom (with spleen, liver, and spherical tumor) yielded errors of $-$16.3% to 4.4%. Volume quantitation errors ranged from $-$4.0 to 5.9% for volumes greater than 88 ml. The percentage differences of the average absorbed dose rates calculated by this methodology and the MIRD S-values were 9.1% for liver, 13.7% for spleen, and 0.9% for the tumor. Good agreement (percent differences were less than 8%) was found between the absorbed dose due to penetrating radiation calculated from this methodology and TLD measurement. More accurate estimates of the 3-D distribution of absorbed dose can be used as a guide in specifying the minimum activity to be administered to patients to deliver a prescribed absorbed dose to tumor without exceeding the toxicity limits of normal tissues. ^