971 resultados para LDH-C4


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellular anatomy and expression of glycine decarboxylase (GDC) protein were studied during leaf development of the C3-C4 intermediate species Moricandia arvensis. Leaf anatomy was initially C3-like and the number and profile area of mitochondria in the bundle-sheath cells were the same as those in adjacent mesophyll cells. Between a leaf length of 6 and 12 mm there was a bundle-sheath-specific, 4-fold increase in the number of mitochondrial profiles, followed by a doubling of their individual profile areas as the leaves expanded further. Subunits of GDC were present in whole-leaf extracts before the anatomical development of bundle-sheath cells. Whereas the GDC H-protein content of leaves increased steadily throughout development, the increase in GDC P-protein was synchronous with the development of mitochondria in the bundle sheath. The P-protein was confined to bundle-sheath mitochondria throughout leaf development, and its content in individual mitochondria increased before the anatomical development of the bundle sheath. Anatomical and biochemical attributes of the C3-C4 character were present in the cotyledons and sepals but not in other photosynthetic organs/tissues. In leaves and cotyledons that developed in the dark, the expression of the P-protein and the organellar development were reduced but the bundle-sheath cell specificity was retained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used a pale-green maize (Zea mays L.) mutant that fails to accumulate ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) to test the working hypothesis that the regulatory phosphorylation of C4 phosphoenolpyruvate carboxylase (PEPC) by its Ca2+-insensitive protein-serine/threonine kinase (PEPC kinase) in the C4 mesophyll cytosol depends on cross-talk with a functional Calvin cycle in the bundle sheath. Wild-type (W22) and bundle sheath defective2-mutable1 (bsd2-m1) seeds were grown in a controlled environment chamber at 100 to 130 μmol m−2 s−1 photosynthetic photon flux density, and leaf tissue was harvested 11 d after sowing, following exposure to various light intensities. Immunoblot analysis showed no major difference in the amount of polypeptide present for several mesophyll- and bundle-sheath-specific photosynthetic enzymes apart from Rubisco, which was either completely absent or very much reduced in the mutant. Similarly, leaf net CO2-exchange analysis and in vitro radiometric Rubisco assays showed that no appreciable carbon fixation was occurring in the mutant. In contrast, the sensitivity of PEPC to malate inhibition in bsd2-m1 leaves decreased significantly with an increase in light intensity, and there was a concomitant increase in PEPC kinase activity, similar to that seen in wild-type leaf tissue. Thus, although bsd2-m1 mutant plants lack an operative Calvin cycle, light activation of PEPC kinase and its target enzyme are not grossly perturbed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flaveria bidentis (L.) Kuntze, a C4 dicot, was genetically transformed with a construct encoding the mature form of tobacco (Nicotiana tabacum L.) carbonic anhydrase (CA) under the control of a strong constitutive promoter. Expression of the tobacco CA was detected in transformant whole-leaf and bundle-sheath cell (bsc) extracts by immunoblot analysis. Whole-leaf extracts from two CA-transformed lines demonstrated 10% to 50% more CA activity on a ribulose-1,5-bisphosphate carboxylase/oxygenase-site basis than the extracts from transformed, nonexpressing control plants, whereas 3 to 5 times more activity was measured in CA transformant bsc extracts. This increased CA activity resulted in plants with moderately reduced rates of CO2 assimilation (A) and an appreciable increase in C isotope discrimination compared with the controls. With increasing O2 concentrations up to 40% (v/v), a greater inhibition of A was found for transformants than for wild-type plants; however, the quantum yield of photosystem II did not differ appreciably between these two groups over the O2 levels tested. The quantum yield of photosystem II-to-A ratio suggested that at higher O2 concentrations, the transformants had increased rates of photorespiration. Thus, the expression of active tobacco CA in the cytosol of F. bidentis bsc and mesophyll cells perturbed the C4 CO2-concentrating mechanism by increasing the permeability of the bsc to inorganic C and, thereby, decreasing the availability of CO2 for photosynthetic assimilation by ribulose-1,5-bisphosphate carboxylase/oxygenase.