536 resultados para LCA, PHB, DMC, Cloroformio, Bioplastiche


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the differences between the temporal and physical aspects of the building life cycle is an essential ingredient in the development of Building Environmental Assessment (BEA) tools. This paper illustrates a theoretical Life Cycle Assessment (LCA) framework aligning temporal decision-making with that of material flows over building development phases. It was derived during development of a prototype commercial building design tool that was based on a 3-D CAD information and communications technology (ICT) platform and LCA software. The framework aligns stakeholder BEA needs and the decision-making process against characteristics of leading green building tools. The paper explores related integration of BEA tool development applications on such ICT platforms. Key framework modules are depicted and practical examples for BEA are provided for: • Definition of investment and service goals at project initiation; • Design integrated to avoid overlaps/confusion over the project life cycle; • Detailing the supply chain considering building life cycle impacts; • Delivery of quality metrics for occupancy post-construction/handover; • Deconstruction profiling at end of life to facilitate recovery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Definition of disease phenotype is a necessary preliminary to research into genetic causes of a complex disease. Clinical diagnosis of migraine is currently based on diagnostic criteria developed by the International Headache Society. Previously, we examined the natural clustering of these diagnostic symptoms using latent class analysis (LCA) and found that a four-class model was preferred. However, the classes can be ordered such that all symptoms progressively intensify, suggesting that a single continuous variable representing disease severity may provide a better model. Here, we compare two models: item response theory and LCA, each constructed within a Bayesian context. A deviance information criterion is used to assess model fit. We phenotyped our population sample using these models, estimated heritability and conducted genome-wide linkage analysis using Merlin-qtl. LCA with four classes was again preferred. After transformation, phenotypic trait values derived from both models are highly correlated (correlation = 0.99) and consequently results from subsequent genetic analyses were similar. Heritability was estimated at 0.37, while multipoint linkage analysis produced genome-wide significant linkage to chromosome 7q31-q33 and suggestive linkage to chromosomes 1 and 2. We argue that such continuous measures are a powerful tool for identifying genes contributing to migraine susceptibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite various approaches, the production of biodegradable plastics such as polyhydroxybutyrate (PHB) in transgenic plants has met with limited success due largely to low expression levels. Even in the few instances where high levels of protein expression have been reported, the transgenic plants have been stunted indicating PHB is phytotoxic (Poirier 2002). This PhD describes the application of a novel virus-based gene expression technology, termed InPAct („In Plant Activation.), for the production of PHB in tobacco and sugarcane. InPAct is based on the rolling circle replication mechanism by which circular ssDNA viruses replicate and provides a system for controlled, high-level gene expression. Based on these features, InPAct was thought to represent an ideal system to enable the controlled, high-level expression of the three phb genes (phbA, phbB and phbC) required for PHB production in sugarcane at a preferred stage of plant growth. A Tobacco yellow dwarf virus (TbYDV)-based InPAct-phbA vector, as well as linear vectors constitutively expressing phbB and phbC were constructed and different combinations were used to transform tobacco leaf discs. A total of four, eight, three and three phenotypically normal tobacco lines were generated from discs transformed with InPAct-phbA, InPAct-phbA + p1300-TaBV P-phbB/phbC- 35S T, p1300-35S P-phbA-NOS T + p1300-TaBV P-phbB/phbC-35S T and InPAct-GUS, respectively. To determine whether the InPAct cassette could be activated in the presence of the TbYDV Rep, leaf samples from the eight InPActphbA + p1300-TaBV P-phbB/phbC-35S T plants were agroinfiltrated with p1300- TbYDV-Rep/RepA. Three days later, successful activation was indicated by the detection of episomes using both PCR and Southern analysis. Leaf discs from the eight InPAct-phbA + p1300-TaBV P-phbB/phbC-35S T transgenic plant lines were agroinfiltrated with p1300-TbYDV-Rep/RepA and leaf tissue was collected ten days post-infiltration and examined for the presence of PHB granules. Confocal microscopy and TEM revealed the presence of typical PHB granules in five of the eight lines, thus demonstrating the functionality of InPActbased PHB production in tobacco. However, analysis of leaf extracts by HPLC failed to detect the presence of PHB suggesting only very low level expression levels. Subsequent molecular analysis of three lines revealed low levels of correctly processed mRNA from the catalase intron contained within the InPAct cassette and also the presence of cryptic splice sites within the intron. In an attempt to increase expression levels, new InPAct-phb cassettes were generated in which the castorbean catalase intron was replaced with a synthetic intron (syntron). Further, in an attempt to both increase and better control Rep/RepA-mediated activation of InPAct cassettes, Rep/RepA expression was placed under the control of a stably integrated alc switch. Leaf discs from a transgenic tobacco line (Alc ML) containing 35S P-AlcR-AlcA P-Rep/RepA were supertransformed with InPAct-phbAsyn or InPAct-GUSsyn using Agrobacterium and three plants (lines) were regenerated for each construct. Analysis of the RNA processing of the InPAct-phbAsyn cassette revealed highly efficient and correct splicing of the syntron, thus supporting its inclusion within the InPAct system. To determine the efficiency of the alc switch to activate InPAct, leaf material from the three Alc ML + InPAct-phbAsyn lines was either agroinfiltrated with 35S P-Rep/RepA or treated with ethanol. Unexpectedly, episomes were detected not only in the infiltrated and ethanol treated samples, but also in non-treated samples. Subsequent analysis of transgenic Alc ML + InPAct-GUS lines, confirmed that the alc switch was leaky in tissue culture. Although this was shown to be reversible once plants were removed from the tissue culture environment, it made the regeneration of Alc ML + InPAct-phbsyn plant lines extremely difficult, due to unintentional Rep expression and therefore high levels of phb expression and phytotoxic PHB production. Two Alc ML + InPAct-phbAsyn + p1300-TaBV P-phbB/phbC-35S T transgenic lines were able to be regenerated, and these were acclimatised, alcohol-treated and analysed. Although episome formation was detected as late as 21 days post activation, no PHB was detected in the leaves of any plants using either microscopy or HPLC, suggesting the presence of a corrupt InPAct-phbA cassette in both lines. The final component of this thesis involved the application of both the alc switch and the InPAct systems to sugarcane in an attempt to produce PHB. Initial experiments using transgenic Alc ML + InPAct-GUS lines indicated that the alc system was not functional in sugarcane under the conditions tested. The functionality of the InPAct system, independent of the alc gene switch, was subsequently examined by bombarding the 35S Rep/RepA cassette into leaf and immature leaf whorl cells derived from InPAct-GUS transgenic sugarcane plants. No GUS expression was observed in leaf tissue, whereas weak and irregular GUS expression was observed in immature leaf whorl tissue derived from two InPAct- GUS lines and two InPAct-GUS + 35S P-AlcR-AlcA P-GUS lines. The most plausible reason to explain the inconsistent and low levels of GUS expression in leaf whorls is a combination of low numbers of sugarcane cells in the DNA replication-conducive S-phase and the irregular and random nature of sugarcane cells bombarded with Rep/RepA. This study details the first report to develop a TbYDV-based InPAct system under control of the alc switch to produce PHB in tobacco and sugarcane. Despite the inability to detect quantifiable levels of PHB levels in either tobacco or sugarcane, the findings of this study should nevertheless assist in the further development of both the InPAct system and the alc system, particularly for sugarcane and ultimately lead to an ethanol-inducible InPAct gene expression system for the production of bioplastics and other proteins of commercial value in plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Queensland University of Technology (QUT) allows the presentation of a thesis for the Degree of Doctor of Philosophy in the format of published or submitted papers, where such papers have been published, accepted or submitted during the period of candidature. This thesis is composed of Seven published/submitted papers and one poster presentation, of which five have been published and the other two are under review. This project is financially supported by the QUTPRA Grant. The twenty-first century started with the resurrection of lignocellulosic biomass as a potential substitute for petrochemicals. Petrochemicals, which enjoyed the sustainable economic growth during the past century, have begun to reach or have reached their peak. The world energy situation is complicated by political uncertainty and by the environmental impact associated with petrochemical import and usage. In particular, greenhouse gasses and toxic emissions produced by petrochemicals have been implicated as a significant cause of climate changes. Lignocellulosic biomass (e.g. sugarcane biomass and bagasse), which potentially enjoys a more abundant, widely distributed, and cost-effective resource base, can play an indispensible role in the paradigm transition from fossil-based to carbohydrate-based economy. Poly(3-hydroxybutyrate), PHB has attracted much commercial interest as a plastic and biodegradable material because some its physical properties are similar to those of polypropylene (PP), even though the two polymers have quite different chemical structures. PHB exhibits a high degree of crystallinity, has a high melting point of approximately 180°C, and most importantly, unlike PP, PHB is rapidly biodegradable. Two major factors which currently inhibit the widespread use of PHB are its high cost and poor mechanical properties. The production costs of PHB are significantly higher than for plastics produced from petrochemical resources (e.g. PP costs $US1 kg-1, whereas PHB costs $US8 kg-1), and its stiff and brittle nature makes processing difficult and impedes its ability to handle high impact. Lignin, together with cellulose and hemicellulose, are the three main components of every lignocellulosic biomass. It is a natural polymer occurring in the plant cell wall. Lignin, after cellulose, is the most abundant polymer in nature. It is extracted mainly as a by-product in the pulp and paper industry. Although, traditionally lignin is burnt in industry for energy, it has a lot of value-add properties. Lignin, which to date has not been exploited, is an amorphous polymer with hydrophobic behaviour. These make it a good candidate for blending with PHB and technically, blending can be a viable solution for price and reduction and enhance production properties. Theoretically, lignin and PHB affect the physiochemical properties of each other when they become miscible in a composite. A comprehensive study on structural, thermal, rheological and environmental properties of lignin/PHB blends together with neat lignin and PHB is the targeted scope of this thesis. An introduction to this research, including a description of the research problem, a literature review and an account of the research progress linking the research papers is presented in Chapter 1. In this research, lignin was obtained from bagasse through extraction with sodium hydroxide. A novel two-step pH precipitation procedure was used to recover soda lignin with the purity of 96.3 wt% from the black liquor (i.e. the spent sodium hydroxide solution). The precipitation process is presented in Chapter 2. A sequential solvent extraction process was used to fractionate the soda lignin into three fractions. These fractions, together with the soda lignin, were characterised to determine elemental composition, purity, carbohydrate content, molecular weight, and functional group content. The thermal properties of the lignins were also determined. The results are presented and discussed in Chapter 2. On the basis of the type and quantity of functional groups, attempts were made to identify potential applications for each of the individual lignins. As an addendum to the general section on the development of composite materials of lignin, which includes Chapters 1 and 2, studies on the kinetics of bagasse thermal degradation are presented in Appendix 1. The work showed that distinct stages of mass losses depend on residual sucrose. As the development of value-added products from lignin will improve the economics of cellulosic ethanol, a review on lignin applications, which included lignin/PHB composites, is presented in Appendix 2. Chapters 3, 4 and 5 are dedicated to investigations of the properties of soda lignin/PHB composites. Chapter 3 reports on the thermal stability and miscibility of the blends. Although the addition of soda lignin shifts the onset of PHB decomposition to lower temperatures, the lignin/PHB blends are thermally more stable over a wider temperature range. The results from the thermal study also indicated that blends containing up to 40 wt% soda lignin were miscible. The Tg data for these blends fitted nicely to the Gordon-Taylor and Kwei models. Fourier transform infrared spectroscopy (FT-IR) evaluation showed that the miscibility of the blends was because of specific hydrogen bonding (and similar interactions) between reactive phenolic hydroxyl groups of lignin and the carbonyl group of PHB. The thermophysical and rheological properties of soda lignin/PHB blends are presented in Chapter 4. In this chapter, the kinetics of thermal degradation of the blends is studied using thermogravimetric analysis (TGA). This preliminary investigation is limited to the processing temperature of blend manufacturing. Of significance in the study, is the drop in the apparent energy of activation, Ea from 112 kJmol-1 for pure PHB to half that value for blends. This means that the addition of lignin to PHB reduces the thermal stability of PHB, and that the comparative reduced weight loss observed in the TGA data is associated with the slower rate of lignin degradation in the composite. The Tg of PHB, as well as its melting temperature, melting enthalpy, crystallinity and melting point decrease with increase in lignin content. Results from the rheological investigation showed that at low lignin content (.30 wt%), lignin acts as a plasticiser for PHB, while at high lignin content it acts as a filler. Chapter 5 is dedicated to the environmental study of soda lignin/PHB blends. The biodegradability of lignin/PHB blends is compared to that of PHB using the standard soil burial test. To obtain acceptable biodegradation data, samples were buried for 12 months under controlled conditions. Gravimetric analysis, TGA, optical microscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), FT-IR, and X-ray photoelectron spectroscopy (XPS) were used in the study. The results clearly demonstrated that lignin retards the biodegradation of PHB, and that the miscible blends were more resistant to degradation compared to the immiscible blends. To obtain an understanding between the structure of lignin and the properties of the blends, a methanol-soluble lignin, which contains 3× less phenolic hydroxyl group that its parent soda lignin used in preparing blends for the work reported in Chapters 3 and 4, was blended with PHB and the properties of the blends investigated. The results are reported in Chapter 6. At up to 40 wt% methanolsoluble lignin, the experimental data fitted the Gordon-Taylor and Kwei models, similar to the results obtained soda lignin-based blends. However, the values obtained for the interactive parameters for the methanol-soluble lignin blends were slightly lower than the blends obtained with soda lignin indicating weaker association between methanol-soluble lignin and PHB. FT-IR data confirmed that hydrogen bonding is the main interactive force between the reactive functional groups of lignin and the carbonyl group of PHB. In summary, the structural differences existing between the two lignins did not manifest itself in the properties of their blends.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Blends of lignin and poly(hydroxybutyrate) (PHB) were obtained by melt extrusion. They were buried in a garden soil for up to 12 months, and the extent and mechanism of degradation were investigated by gravimetric analysis, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and Fourier transform infra-red spectroscopy (FTIR) over the entire range of compositions. The PHB films were disintegrated and lost 45 wt% of mass within 12 months. This value dropped to 12 wt% of mass when only 10 wt% of lignin was present, suggesting that lignin both inhibited and slowed down the rate of PHB degradation. TGA and DSC indicated structural changes, within the lignin/PHB matrix, with burial time, while FTIR results confirmed the fragmentation of the PHB polymer. XPS revealed an accumulation of biofilms on the surface of buried samples, providing evidence of a biodegradation mechanism. Significant surface roughness was observed with PHB films due to microbial attack caused by both loosely and strongly associated micro-organisms. The presence of lignin in the blends may have inhibited the colonisation of the micro-organisms and caused the blends to be more resistant to microbial attack. Analysis suggested that lignin formed strong hydrogen bonds with PHB in the buried samples and it is likely that the rate of breakdown of PHB is reduced, preventing rapid degradation of the blends.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Road construction, maintenance and operation are activities that impact the environment by way of energy use, resource consumption and emission. Components such as construction material, transportation, street lighting, rolling resistance, traffic congestion during works, albedo and end-of-life processing impact the environment at different phases of the life of a road. With a view to promote sustainable development, a few sustainability rating schemes, e.g. Infrastructure Sustainability and Invest (Australia), Envision and Greenroads (USA), and CEEQUAL (UK) have been developed, that can assess road projects. These schemes address environmental areas such as: energy and emission, land, water, materials, discharges into surroundings, waste and ecology as factors for sustainable development. This paper assesses different rating schemes based on a defined comprehensive life cycle assessment (LCA) system boundary for road projects to identify different environmental indicators that address sustainable road development and operation. The findings indicate that new indicators are required to address different environmental components during the operation phase of roads.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Road infrastructure has been considered as one of the most expensive and extensive infrastructure assets of the built environment globally. This asset also impacts the natural environment significantly during different phases of life e.g. construction, use, maintenance and end-of-life. The growing emphasis for sustainable development to meet the needs of future generations requires mitigation of the environmental impacts of road infrastructure during all phases of life e.g. construction, operation and end-of-life disposal (as required). Life-cycle analysis (LCA), a method of quantification of all stages of life, has recently been studied to explore all the environmental components of road projects due to limitations of generic environmental assessments. The LCA ensures collection and assessment of the inputs and outputs relating to any potential environmental factor of any system throughout its life. However, absence of a defined system boundary covering all potential environmental components restricts the findings of the current LCA studies. A review of the relevant published LCA studies has identified that environmental components such as rolling resistance of pavement, effect of solar radiation on pavement(albedo), traffic congestion during construction, and roadway lighting & signals are not considered by most of the studies. These components have potentially higher weightings for environment damage than several commonly considered components such as materials, transportation and equipment. This paper presents the findings of literature review, and suggests a system boundary model for LCA study of road infrastructure projects covering potential environmental components.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The construction and operation of infrastructure assets can have significant impact on society and the region. Using a sustainability assessment framework can be an effective means to build sustainability aspects into the design, construction and operation of infrastructure assets. The conventional evaluation processes and procedures for infrastructure projects do not necessarily measure the qualitative/quantitative effectiveness of all aspects of sustainability: environment, social wellbeing and economy. As a result, a few infrastructure sustainability rating schemes have been developed with a view to assess the level of sustainability attained in the infrastructure projects. These include: Infrastructure Sustainability (Australia); CEEQUAL (UK); and Envision (USA). In addition, road sector specific sustainability rating schemes such as Greenroads (USA) and Invest (Australia) have also been developed. These schemes address several aspects of sustainability with varying emphasis (weightings) on areas such as: use of resources; emission, pollution and waste; ecology; people and place; management and governance; and innovation. The attainment of sustainability of an infrastructure project depends largely on addressing the whole-of-life environmental issues. This study has analysed the rating schemes’ coverage of different environmental components for the road infrastructure under the five phases of a project: material, construction, use, maintenance and end-of-life. This is based on a comprehensive life cycle assessment (LCA) system boundary. The findings indicate that there is a need for the schemes to consider key (high impact) life cycle environmental components such as traffic congestion during construction, rolling resistance due to surface roughness and structural stiffness of the pavement, albedo, lighting, and end-of-life management (recycling) to deliver sustainable road projects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The construction industry is one of the largest sources of carbon emissions. Manufacturing of raw materials, such as cement, steel and aluminium, is energy intensive and has considerable impact on carbon emissions level. Due to the rising recognition of global climate change, the industry is under pressure to reduce carbon emissions. Carbon labelling schemes are therefore developed as meaningful yardsticks to measure and compare carbon emissions. Carbon labelling schemes can help switch consumer-purchasing habits to low-carbon alternatives. However, such switch is dependent on a transparent scheme. The principle of transparency is highlighted in all international greenhouse gas (GHG) standards, including the newly published ISO 14067: Carbon footprint of products – requirements and guidelines for quantification and communication. However, there are few studies which systematically investigate the transparency requirements in carbon labelling schemes. A comparison of five established carbon labelling schemes, namely the Singapore Green Labelling Scheme, the CarbonFree (the U.S.), the CO2 Measured Label and the Reducing CO2 Label (UK), the CarbonCounted (Canada), and the Hong Kong Carbon Labelling Scheme is therefore conducted to identify and investigate the transparency requirements. The results suggest that the design of current carbon labels have transparency issues relating but not limited to the use of a single sign to represent the comprehensiveness of the carbon footprint. These transparency issues are partially caused by the flexibility given to select system boundary in the life cycle assessment (LCA) methodology to measure GHG emissions. The primary contribution of this study to the construction industry is to reveal the transparency requirements from international GHG standards and carbon labels for construction products. The findings also offer five key strategies as practical implications for the global community to improve the performance of current carbon labelling schemes on transparency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A field oriented control (FOC) algorithm is simulated and implemented for use with a permanent magnet synchronous motor (PMSM). Rotor position is sensed using Hall effect switches on the stator because other hardware position sensors attached to the rotor may not be desirable or cost effective for certain applications. This places a limit on the resolution of position sensing – only a few Hall effect switches can be placed. In this simulation, three sensors are used and the position information is obtained at higher resolution by estimating it from the rotor dynamics, as shown in literature previously. This study compares the performance of the method with an incremental encoder using simulations. The FOC algorithm is implemented using Digital Motor Control (DMC) and IQ Texas Instruments libraries from a Simulink toolbox called Embedded Coder, and downloaded into a TI microcontroller (TMS320F28335) known as the Piccolo via Code Composer Studio (CCS).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context Cancer patients experience a broad range of physical and psychological symptoms as a result of their disease and its treatment. On average, these patients report ten unrelieved and co-occurring symptoms. Objectives To determine if subgroups of oncology outpatients receiving active treatment (n=582) could be identified based on their distinct experience with thirteen commonly occurring symptoms; to determine whether these subgroups differed on select demographic, and clinical characteristics; and to determine if these subgroups differed on quality of life (QOL) outcomes. Methods Demographic, clinical, and symptom data from one Australian and two U.S. studies were combined. Latent class analysis (LCA) was used to identify patient subgroups with distinct symptom experiences based on self-report data on symptom occurrence using the Memorial Symptom Assessment Scale (MSAS). Results Four distinct latent classes were identified (i.e., All Low (28.0%), Moderate Physical and Lower Psych (26.3%), Moderate Physical and Higher Psych (25.4%), All High (20.3%)). Age, gender, education, cancer diagnosis, and presence of metastatic disease differentiated among the latent classes. Patients in the All High class had the worst QOL scores. Conclusion Findings from this study confirm the large amount of interindividual variability in the symptom experience of oncology patients. The identification of demographic and clinical characteristics that place patients are risk for a higher symptom burden can be used to guide more aggressive and individualized symptom management interventions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to the increasing recognition of global climate change, the building and construction industry is under pressure to reduce carbon emissions. A central issue in striving towards reduced carbon emissions is the need for a practicable and meaningful yardstick for assessing and communicating greenhouse gas (GHG) results. ISO 14067 was published by the International Organization for Standardization in May 2013. By providing specific requirements in the life cycle assessment (LCA) approach, the standard clarifies the GHG assessment in the aspects of choosing system boundaries and simulating use and end-of-life phases when quantifying carbon footprint of products (CFPs). More importantly, the standard, for the first time, provides step-to-step guidance and standardized template for communicating CFPs in the form of CFP external communication report, CFP performance tracking report, CFP declaration and CFP label. ISO 14067 therefore makes a valuable contribution to GHG quantification and transparent communication and comparison of CFPs. In addition, as cradle-to-grave should be used as the system boundary if use and end-of-life phases can be simulated, ISO 14067 will hopefully promote the development and implementation of simulation technologies, with Building Information Modelling (BIM) in particular, in the building and construction industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Textile waste is a significant contributor to landfill yet the majority of textiles can be recycled, allowing for the energy and fibre to be reclaimed. This chapter examines the open-loop and closed loop recycling of textile products with particular reference to the fashion and apparel context. It describes the fibres used within apparel, the current mechanical and chemical methods for textile recycling, LCA findings for each method, and applications within apparel for each. Barriers for more effective recycling include ease of integration into existing textile and apparel design methods as well as coordinated collection of post-consumer waste. The chapter concludes with a discussion of innovations that point to future trends in both open-loop and closed-loop recycling within the apparel industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate the aptitude of supramolecular hydrogel formation using simple bile acid such as lithocholic acid in aqueous solution in the presence of various dimeric or oligomeric amines. By variation of the choice of the amines in such mixtures the gelation properties could be modulated. However, the replacement of lithocholic acid (LCA) by cholic acid or deoxycholic acid resulted in no hydrogel formation. FT-IR studies confirm that the carboxylate and ammonium residues of the two components are involved in the salt (ion-pair) formation. This promotes further assembly of the components reinforced by a continuous hydrogen bonded network leading to gelation. Electron microscopy shows the morphology of the internal organization of gels of two component systems which also depends significantly on the amine part. Variation of the amine component from the simple 1,2-ethanediamine (EDA) to oligomeric amines in such gels of lithocholic acid changes the morphology of the assembly from long one-dimensional nanotubes to three-dimensional complex structures. Single crystal X-ray diffraction analysis with one of the amine-LCA complexes suggested the motif of fiber formation where the amines interact with the carboxylate and hydroxyl moieties through electrostatic forces and hydrogen bonding. From small angle neutron scattering study, it becomes clear that the weak gel from LCA-EDA shows scattering oscillation due to the presence of non-interacting nanotubules while for gels of LCA with oligomeric amines the individual fibers come together to form complex three-dimensional organizations of higher length scale. The rheological properties of this class of two component system provide clear evidence that the flow behavior can be modulated varying the acid-amine ratio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Engineering the production of polyhydroxyalkanoates (PHAs) into high biomass bioenergy crops has the potential to provide a sustainable supply of bioplastics and energy from a single plant feedstock. One of the major challenges in engineering C-4 plants for the production of poly[(R)-3-hydroxybutyrate] (PHB) is the significantly lower level of polymer produced in the chloroplasts of mesophyll (M) cells compared to bundle sheath (BS) cells, thereby limiting the full PHB yield-potential of the plant. In this study, we provide evidence that the access to substrate for PHB synthesis may limit polymer production in M chloroplasts. Production of PHB in M cells of sugarcane is significantly increased by replacing -ketothiolase, the first enzyme in the bacterial PHA pathway, with acetoacetyl-CoA synthase. This novel pathway enabled the production of PHB reaching an average of 6.3% of the dry weight of total leaf biomass, with levels ranging from 3.6 to 11.8% of the dry weight (DW) of individual leaves. These yields are more than twice the level reported in PHB-producing sugarcane containing the -ketothiolase and illustrate the importance of producing polymer in mesophyll plastids to maximize yield. The molecular weight of the polymer produced was greater than 2x10(6)Da. These results are a major step forward in engineering a high biomass C-4 grass for the commercial production of PHB.