971 resultados para LANGMUIR MONOLAYERS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well-known that the senses (or the handedness) of the helical assemblies formed from compressed monolayers and bilayers of chiral amphiphiles are highly specific about the chirality of the monomers concerned. We present here a molecular approach that can successfully predict the senses of such helical morphologies. The present approach is based on a reduced tractable description in terms of an effective pair potential (EPP) which depends on the distance of separation and the relative orientations of the two amphiphiles. This approach explicitly considers the pairwise intermolecular interactions between the groups attached to the chiral centers of the two neighboring amphiphiles. It is found that for a pair of the same kind of enantiomers the minimum energy configuration favors a twist angle between molecules and that this twist from neighbor to neighbor gives rise to the helicity of the aggregate. From the known twist angles at the minimum energy configuration the successive arrangement of an array of molecules can be predicted. Therefore, the sense of the helicity can be predicted from the molecular interactions. The predicted senses of the helical structures are in complete agreement with all known experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonequilibrium dynamical behaviour that arises when two ordered two-dimensional monolayers of particles are sheared over each other is studied in Brownian dynamics simulations. A curious sequence of nonequilibrium states is observed as the driving rate is increased, the most striking of which is a sliding state with irregular alternation between disordered and ordered states. We comment on possible mechanisms underlying these cycles, and experiments that could observe them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine the shear-thinning behaviour of a two dimensional yield stress bearing monolayer of sorbitan tristearate at air/water interface. The flow curve consists of a linear region at low shear stresses/shear rates, followed by a stress plateau at higher values. The velocity profile obtained from particle imaging velocimetry indicates that shear banding occurs, showing coexistence of the fluidized region near the rotor and solid region with vanishing shear-rate away from the rotor. In the fluidized region, the velocity profile, which is linear at low shear rates, becomes exponential at the onset of shear-thinning, followed by a time varying velocity profile in the plateau region. At low values of constant applied shear rates, the viscosity of the film increases with time, thus showing aging behaviour like in soft glassy three-dimensional (3D) systems. Further, at the low values of the applied stress in the yield stress regime, the shear-rate fluctuations in time show both positive and negative values, similar to that observed in sheared 3D jammed systems. By carrying out a statistical analysis of these shear-rate fluctuations, we estimate the effective temperature of the soft glassy monolayer using the Galavatti-Cohen steady state fluctuation relation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This short review compiles the studies on self assembled alkanethiol monolayers formed on silver surfaces with respect to their structure and stability. Alkanethiol-based assemblies on silver surfaces are poor cousins of thiol monolayers on gold. The formation of well-ordered monolayers on silver surfaces is relatively more difficult than the corresponding systems on gold since the inherent oxide film on silver interferes with the formation and stability of the assembly. There are contradictory reports on the nature and physicochemical characteristics of alkanethiol monolayers on silver surfaces. This review attempts to highlight various studies in the literature including our efforts in this area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Janus structures have attracted a great deal of interest because of their fascinating properties and potential for applications. In this study, we demonstrate that hyperbranched polymers, bearing randomly placed docosyl (C22 alkyl segment) and PEG segments on their periphery, can readily reconfigure so as to segregate the alkyl and PEG segments, thereby generating Janus-type structures that we have termed Janus hybramers. DSC studies clearly reveal an endothermic transition that corresponds to the melting of the docosyl domains, while Langmuir isotherms demonstrate that these polymers form stable monolayers that appear to undergo a slight densification beyond a critical surface pressure; this suggested possible crystallization of the docosyl segments at the air-water interface. AFM studies of the transferred monolayers reveal various interesting aggregate morphologies at different surface pressures suggestive of island formation at the air-water interface; at the same time they also provided an estimate of the monolayer thickness. These Janus HBPs also form vesicles as evident from TEM and AFM studies; the AFM height of the deposited vesicles, as expected, was roughly 4 times that of the monolayer. SAXS studies revealed the formation of lamellar structures; the interlamellar spacing was largest when the relative mole fractions of docosyl and PEG segments were similar, but the spacing decreased when the mole fraction of either of these peripheral segments is substantially smaller; this suggested the possible presence of interdigitation within the domains of the minor component.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A peripherally clickable hyperbranched polyester carrying numerous propargyl terminal groups was prepared by a simple melt transesterification polycondensation of a suitably designed AB(2) monomer; this clickable hyperscaffold was then transformed into a variety of different derivatives by using the Cu-catalyzed azide-yne click reaction. Functionalization of the periphery with equimolar quantities of mutually immiscible segments, such as hydrocarbon, fluorocarbon, and PEG, yielded frustrated molecular systems that readapt and form structures wherein the immiscible segments appear to self-segregate to generate either Janus structures (when two immiscible segments are present) or tripodal structures (when three immiscible segments are present). Evidence for such self-segregation was obtained from a variety of studies, such as differential scanning calorimetry, Langmuir isotherms, AFM imaging, and small-angle X-ray scattering measurements. Crystallization of one or more of the peripheral segments reinforced this self-segregation; the weight-fraction-normalized enthalpies of melting associated with the different domains revealed a competition between the segments to optimize their crystalline organization. When one or more of the segments are amorphous, the remaining segments crystallize more effectively and consequently exhibit a higher melting enthalpy. AFM images of monolayers, transferred from the Langmuir trough, revealed that the thickness matches the expected values; furthermore, contact angle measurements clearly demonstrated that the monolayer films are fairly hydrophobic, and in the case of the tripodal hybramers, the presence of domains of hydrocarbon and fluorocarbon appears to impart nanoscale chemical heterogeneity that is reflected in the strong hysteresis in the advancing and receding contact angles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present results of surface mechanical and particle tracking measurements of nanoparticles trapped at the air-water interface as a function of their areal density. We monitor both the surface pressure (II) and isothermal compression modulus (epsilon) as well as the dynamics of nanoparticle clusters, using fluorescence confocal microscopy while they are compressed to very high density near the two dimensional close packing density Phi similar to 0.82. We observe non-monotonic variation in both epsilon and the dynamic heterogeneity, characterized by the dynamical susceptibility chi(4) with Phi, in such high density monolayers. We provide insight into the underlying nature of such transitions in close packed high density nanoparticle monolayers in terms of the morphology and flexibility of these soft colloidal particles.. We discuss the significance our results in the context of related studies on two dimensional granular or colloidal systems. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report examines the assembly of chalcogenide organic molecules on various surfaces, focusing on cases when chemisorption is accompanied by carbon-chalcogen atom-bond scission. In the case of alkane and benzyl chalcogenides, this induces formation of a chalcogenized interface layer. This process can occur during the initial stages of adsorption and then, after passivation of the surface, molecular adsorption can proceed. The characteristics of the chalcogenized interface layer can be significantly different from the metal layer and can affect various properties such as electron conduction. For chalcogenophenes, the carbon-chalcogen atombond breaking can lead to opening of the ring and adsorption of an alkene chalcogenide. Such a disruption of the pi-electron system affects charge transport along the chains. Awareness about these effects is of importance from the point of view of molecular electronics. We discuss some recent studies based on X-ray photoelectron spectroscopy that shed light on these aspects for a series of such organic molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Collective cell migrations are essential in several physiological processes and are driven by both chemical and mechanical cues. The roles of substrate stiffness and confinement on collective migrations have been investigated in recent years, however few studies have addressed how geometric shapes influence collective cell migrations. Here, we address the hypothesis that the relative position of a cell within the confinement influences its motility. Monolayers of two types of epithelial cells-MCF7, a breast epithelial cancer cell line, and MDCK, a control epithelial cell line-were confined within circular, square, and cross-shaped stencils and their migration velocities were quantified upon release of the constraint using particle image velocimetry. The choice of stencil geometry allowed us to investigate individual cell motility within convex, straight and concave boundaries. Cells located in sharp, convex boundaries migrated at slower rates than those in concave or straight edges in both cell types. The overall cluster migration occurred in three phases: an initial linear increase with time, followed by a plateau region and a subsequent decrease in cluster speeds. An acto-myosin contractile ring, present in the MDCK but absent in MCF7 monolayer, was a prominent feature in the emergence of leader cells from the MDCK clusters which occurred every similar to 125 mu m from the vertex of the cross. Further, coordinated cell movements displayed vorticity patterns in MDCK which were absent in MCF7 clusters. We also used cytoskeletal inhibitors to show the importance of acto-myosin bounding cables in collective migrations through translation of local movements to create long range coordinated movements and the creation of leader cells within ensembles. To our knowledge, this is the first demonstration of how bounding shapes influence long-term migratory behaviours of epithelial cell monolayers. These results are important for tissue engineering and may also enhance our understanding of cell movements during developmental patterning and cancer metastasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a good alternative method to improve the tribological properties of polymer films by chemisorbing a long-chain monolayer on the functional polymer surface. Thus, a novel self-assembled monolayer is successfully prepared on a silicon substrate coated with amino-group-containing polyethyleneimine (PEI) by the chemical adsorption of stearic acid (STA) molecules. The formation and structure of the STA-PEI film are characterized by means of contact-angle measurement and ellipsometric thickness measurement, and of Fourier transformation infrared spectrometric and atomic force microscopic analyses. The micro- and macro-tribological properties of the STA-PEI film are investigated on an atomic force microscope (AFM) and a unidirectional tribometer, respectively. It has been found that the STA monolayer about 2.1-nm thick is produced on the PEI coating by the chemical reaction between the amino groups in the PEI and the carboxyl group in the STA molecules to form a covalent amide bond in the presence of N,N'-dicyclohexylcarbodiimide (DCCD) as a dehydrating regent. By introducing the STA monolayer, the hydrophilic PEI polymer surface becomes hydrophobic with a water contact angle to be about 105degrees. Study of the time dependence of the film formation shows that the adsorption of PEI is fast, whereas at least 24 h is needed to generate the saturated STA monolayer. Whereas the PEI coating has relatively high adhesion, friction, and poor anti-wear ability, the STA-PEI film possesses good adhesive resistance and high load-carrying capacity and anti-wear ability, which could be attributed to the chemical structure of the STA-PEI thin film. It is assumed that the hydrogen bonds between the molecules of the STA-PEI film act to stabilize the film and can be restored after breaking during sliding. Thus, the self-assembled STA-PEI thin film might find promising application in the lubrication of micro-electromechanical systems (MEMS).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organised multilayers were formed from the controlled self-assembly of ferrocene alkyl thiols on Au(111) surfaces. The control was accomplished by increasing the concentration of the thiol solutions used for the assembly. Cyclic voltammetry, ellipsometry, scanning probe microscopy (STM and AFM) and in situ FTIR spectroscopy were used to probe the differences between mono- and multilayers of the same compounds. Electrochemical desorption studies confirmed that the multilayer structure is attached to the surface via one monolayer. The electrochemical behaviour of the multilayers indicated the presence of more than one controlling factor during the oxidation step, whereas the reduction was kinetically controlled which contrasts with the behaviour of monolayers, which exhibit kinetic control for the oxidation and reduction steps. Conventional and imaging ellipsometry confirmed that multilayers with well-defined increments in thickness could be produced. However, STM indicated that at the monolayer stage, the thiols used promote the mobility of Au atoms on the surface. It is very likely that the multilayer structure is held together through hydrogen bonding. To the best of out knowledge, this is the first example of a controlled one-step growth of multilayers of ferrocenyl alkyl thiols using self-assembly techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An immunosensor interface based on mixed hydrophobic self-assembled monolayers (SAMs) of methyl and carboxylic acid terminated thiols with covalently attached human Immunoglobulin G (hIgG), is investigated. The densely packed and organised SAMs were characterised by contact angle measurements and cyclic voltammetry. The effect of the non-ionic surfactant, Tween 20, in preventing nonspecific adsorption is addressed by ellipsometry during physical and covalent hIgG immobilization on pure and mixed SAMs, respectively. It is clearly demonstrated that nonspecific adsorption due to hydrophobic interactions of hIgG on methyl ended groups is totally inhibited, whereas electrostatic/hydrogen bonding interactions with the exposed carboxylic groups prevail in the presence of surfactant. Results of ellipsometry and Atomic Force Microscopy, reveal that the surface concentration of covalently immobilized hIgG is determined by the ratio of COOH/CH3-terminated thiols in SAM forming solution. Moreover, the ellipsometric data demonstrates that the ratio of bound anti-hIgG/hIgG depends on the density of hIgG on the surface and that the highest ratio is close to three. We also report the selectivity and high sensitivity achieved by chronoamperometry in the detection of adsorbed hIgG and the reaction with its antibody.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At the shock velocity range of 7~9km/s, the variations of electron density behind strong normal shock waves are measured in a low-density shock tube by using the Langmuir electrostatic probe technique. The electron temperature, calculated based on Park’s three-temperature model, is used in interpreting the probe current data. The peak electron densities determined in the present experiment are shown to be in a good agreement with those predicted by Lin’s calculation. The experimentally obtained ratios of the characteristic ionization distance to the mean free path of freestream ahead of the shock wave are found to be in a good agreement with the existing experiments and Park’s calculation.