968 resultados para LABORATORY ENVIRONMENT
Resumo:
The human-induced rise in atmospheric carbon dioxide since the industrial revolution has led to increasing oceanic carbon uptake and changes in seawater carbonate chemistry, resulting in lowering of surface water pH. In this study we investigated the effect of increasing CO2 partial pressure (pCO2) on concentrations of volatile biogenic dimethylsulfide (DMS) and its precursor dimethylsulfoniopropionate (DMSP), through monoculture studies and community pCO2 perturbation. DMS is a climatically important gas produced by many marine algae: it transfers sulfur into the atmosphere and is a major influence on biogeochemical climate regulation through breakdown to sulfate and formation of subsequent cloud condensation nuclei (CCN). Overall, production of DMS and DMSP by the coccolithophore Emiliania huxleyi strain RCC1229 was unaffected by growth at 900 matm pCO2, but DMSP production normalised to cell volume was 12% lower at the higher pCO2 treatment. These cultures were compared with community DMS and DMSP production during an elevated pCO2 mesocosm experiment with the aim of studying E. huxleyi in the natural environment. Results contrasted with the culture experiments and showed reductions in community DMS and DMSP concentrations of up to 60 and 32% respectively at pCO2 up to 3000 matm, with changes attributed to poorer growth of DMSP-producing nanophytoplankton species, including E. huxleyi, and potentially increased microbial consumption of DMSand dissolvedDMSPat higher pCO2.DMSandDMSPproduction differences between culture and community likely arise from pH affecting the inter-species responses between microbial producers and consumers.
Resumo:
The purification capacity of a laboratory scale tidal flow reed bed system with final effluent recirculation at a ratio of 1:1 was investigated in this study. In particular, this four-stage reed bed system was highly loaded with strong agricultural wastewater. Under the hydraulic and organic loading rates as high as 0.43 m3/m2d and 1055 gCOD/m2d, respectively, the average removal efficiencies of COD, BOD5, SS, NH4-N and P were 77%, 78%, 66%, 62% and 38%. Even with the high loading rates, approximately 30% of NH4-N was converted into NO2-N and NO3-N from the mid-stage of the system where nitrification took place. The results suggest that the multi-stage reed bed system could be employed to treat strong wastewater under high loading, especially for the substantive mass removal of solids, organic matter and ammoniacal-nitrogen. Tidal flow combined with effluent recirculation is a favourable operation strategy to achieve this objective.
Resumo:
Biotic interactions such as predation and competition can influence aquatic communities at small spatial scales, but they are expected to be overridden by environmental factors at large scales. The continuing threat to freshwater biodiversity of biological invasions indicates that biotic factors do, however, have important structuring roles. In Irish rivers, the native amphipod Gammarus duebeni celticus has become locally extinct, ostensibly through differential predation by the more aggressive and introduced G. pulex. This mechanism explains impacts of G. pulex at within-river spatial scales on native macroinvertebrate community diversity, including declines in ephemeropterans, plecopterans, dipterans and oligochaetes. To determine if these patterns are predictable at larger spatial scales, we assessed patterns in native macroinvertebrate communities across river sites of the Erne catchment in 1998 and 1999, in conjunction with the distribution of G. pulex and G. d. celticus. In both years, G. pulex dominated invaded sites, whereas G. d. celticus occurred at low abundance in uninvaded sites. In both years, invaded sites had lower diversity and fewer pollution sensitive invertebrate species than un-invaded sites. Community ordination in 1998 showed that invaded sites had higher conductivity, smaller substrate particle size and comprised a lower proportion of pollution sensitive taxa including Ephemeroptera and Plecoptera. In contrast, in 1999, conductivity was the only variable explaining site ordination along axis 1, but was unable to separate sites with respect to invasion status. A second explanatory axis separated sites with respect to invasion status, with invaded sites having fewer taxa, including lower abundance of ephemeropterans, dipterans and plecopterans. Laboratory experiments examined the potential role of differential predation between the two Gammarus species in explaining these taxon specific patterns in the field. Survival of the ephemeropterans, Ephemerella ignita and Ecdyonurus venosus and the isopod, Asellus aquaticus, was lower when interacting with G. pulex than with G. d. celticus. This study indicates that G. putex may alter invertebrate community structure at scales beyond those detected within individual rivers. However, effects may be influenced by gradients in physico-chemistry, which may be temporal or depend on catchment characteristics. Invasions by amphipods have increased globally, thus comprehensive assessments of their impacts and of other aquatic invaders, may only be apparent when studies are conducted at a range of spatio-temporal scales.
Resumo:
Aims. We aim to investigate the chemistry and gas phase abundance of HNCO and the variation of the HNCO/CS abundance ratio as a diagnostic of the physics and chemistry in regions of massive star formation. Methods. A numerical-chemical model has been developed which self-consistently follows the chemical evolution of a hot core. The model comprises of two distinct stages. The first stage follows the isothermal, modified free-fall collapse of a molecular dark cloud. This is immediately followed by an increase in temperature which represents the switch on of a central massive star and the subsequent evolution of the chemistry in a hot, dense gas cloud (the hot core). During the collapse phase, gas species are allowed to accrete on to grain surfaces where they can participate in further reactions. During the hot core phase surface species thermally desorb back in to the ambient gas and further chemical evolution takes place. For comparison, the chemical network was also used to model a simple dark cloud and photodissociation regions. Results. Our investigation reveals that HNCO is inefficiently formed when only gas-phase formation pathways are considered in the chemical network with reaction rates consistent with existing laboratory data. This is particularly true at low temperatures but also in regions with temperatures up to ~200 K. Using currently measured gas phase reaction rates, obtaining the observed HNCO abundances requires its formation on grain surfaces – similar to other “hot core” species such as CH3OH. However our model shows that the gas phase HNCO in hot cores is not a simple direct product of the evaporation of grain mantles. We also show that the HNCO/CS abundance ratio varies as a function of time in hot cores and can match the range of values observed. This ratio is not unambiguously related to the ambient UV field as been suggested – our results are inconsistent with the hypothesis of Martín et al. (2008, ApJ, 678, 245). In addition, our results show that this ratio is extremely sensitive to the initial sulphur abundance. We find that the ratio grows monotonically with time with an absolute value which scales approximately linearly with the S abundance at early times.
Resumo:
To compare the rejection rates of non-small cell lung cancer (NSCLC) samples obtained by differing sampling methods for testing by Sanger sequencing for epidermal growth factor receptor (EGFR) mutations. To assess the association between unsatisfactory outcomes and the quantity of DNA extracted from cytological versus histological samples.
Resumo:
The screw conveyor system plays a fundamental role during the EPB tunnelling operations for the tunnel face pressure control. On the other hand, the use of additives such chemical foams is even more applied in order to extend the EPB technology to the cohesionless soils. Despite the extensive use of the EPB technique in urban environment, little knowledge exists in the understanding of the behavior of such conditioned soil during the excavation operations. At the Turin University of Technology the Tunnelling and Underground Space Centre, in the mainframe of a wider research on soil conditioning, has developed an experimental apparatus that simulates the extraction phase with screw conveyor from a pressurized tank. In this paper the apparatus is presented and the results of a first series of tests carried out on sand are discussed. © 2007 Taylor & Francis Group.
Resumo:
Tephrochronology, a key tool in the correlation of Quaternary sequences, relies on the extraction of tephra shards from sediments for visual identification and high-precision geochemical comparison. A prerequisite for the reliable correlation of tephra layers is that the geochemical composition of glass shards remains unaltered by natural processes (e.g. chemical exchange in the sedimentary environment) and/or by laboratory analytical procedures. However, natural glasses, particularly when in the form of small shards with a high surface to volume ratio, are prone to chemical alteration in both acidic and basic environments. Current techniques for the extraction of distal tephra from sediments involve the ‘cleaning’ of samples in precisely such environments and at elevated temperatures. The acid phase of the ‘cleaning’ process risks alteration of the geochemical signature of the shards, while the basic phase leads to considerable sample loss through dissolution of the silica network. Here, we illustrate the degree of alteration and loss to which distal tephras may be prone, and introduce a less destructive procedure for their extraction. This method is based on stepped heavy liquid flotation and which results in samples of sufficient quality for analysis while preserving their geochemical integrity. In trials, this method out-performed chemical extraction procedures in terms of the number of shards recovered and has resulted in the detection of new tephra layers with low shard concentrations. The implications of this study are highly significant because (i) the current database of distal tephra records and their corresponding geochemical signatures may require refinement and (ii) the record of distal tephras may be incomplete due to sample loss induced by corrosive laboratory procedures. It is therefore vital that less corrosive laboratory procedures are developed to make the detection and classification of distal glass tephra more secure.
Resumo:
Arsenic (As) is ubiquitous in the environment in the carcinogenic inorganic forms, posing risks to human health in many parts of the world. Many microorganisms have evolved a series of mechanisms to cope with inorganic arsenic in their growth media such as transforming As compounds into volatile derivatives. Bio-volatilization of As has been suggested to play an important role in global As biogeochemical cycling, and can also be explored as a potential method for arsenic bioremediation. This review aims to provide an overview of the quality and quantity of As volatilization by fungi, bacteria, microalga and protozoans. Arsenic bio-volatilization is influenced by both biotic and abiotic factors that can be manipulated/elucidated for the purpose of As bioremediation. Since As bio-volatilization is a resurgent topic for both biogeochemistry and environmental health, our review serves as a concept paper for future research directions.
Resumo:
The advent of high-power laser facilities has, in the past two decades, opened a new field of research where astrophysical environments can be scaled down to laboratory dimensions, while preserving the essential physics. This is due to the invariance of the equations of magneto-hydrodynamics to a class of similarity transformations. Here we review the relevant scaling relations and their application in laboratory astrophysics experiments with a focus on the generation and amplification of magnetic fields in cosmic environment. The standard model for the origin of magnetic fields is a multi stage process whereby a vanishing magnetic seed is first generated by a rotational electric field and is then amplified by turbulent dynamo action to the characteristic values observed in astronomical bodies. We thus discuss the relevant seed generation mechanisms in cosmic environment including resistive mechanism, collision-less and fluid instabilities, as well as novel laboratory experiments using high power laser systems aimed at investigating the amplification of magnetic energy by magneto-hydrodynamic (MHD) turbulence. Future directions, including efforts to model in the laboratory the process of diffusive shock acceleration are also discussed, with an emphasis on the potential of laboratory experiments to further our understanding of plasma physics on cosmic scales.
Resumo:
Nowadays, the realization of the Virtual Factory (VF) is the strategic goal of many manufacturing enterprises for the coming years. The industrial scenario is characterized by the dynamics of innovations increment and the product life cycle became shorter. Furthermore products and the corresponding manufacturing processes get more and more complex. Therefore, companies need new methods for the planning of manufacturing systems.
To date, the efforts have focused on the creation of an integrated environment to design and manage the manufacturing process of a new product. The future goal is to integrate Virtual Reality (VR) tools into the Product Lifecycle Management of the manufacturing industries.
In order to realize this goal the authors have conducted a study to perform VF simulation steps for a supplier of Industrial Automation Systems and have provided a structured approach focusing on interaction between simulation software and VR hardware tools in order to simulate both robotic and
manual work cells.
The first results of the study in progress have been carried out in the VR Laboratory of the Competence Regional Centre for the qualification of the Transportation Systems that has been founded by Campania Region.
Resumo:
Os estuários são ambientes complexos, biologicamente diversos e muito importantes no que respeita à produtividade primária. As zonas intertidais destes ecossistemas são ocupadas por organismos que possuem uma elevada capacidade de sobrevivência e adaptação face às variadas e rápidas alterações nos factores ambientais (tais como temperatura, salinidade, conteúdo hídrico, etc.). As cadeias tróficas com origem no ecossistema estuarino bentónico são essencialmente herbívoras, regulando o fluxo de energia desde o fundo sedimentar e através do ecossistema. Nas áreas estuarinas intertidais a produção primária é essencialmente suportada pelo microfitobentos (MPB). Estas comunidades de microalgas bênticas constituem uma importante fonte de matéria orgânica e são por si só a principal fonte alimentar para as populações de Hydrobia. Neste contexto, a interacção MPB - Hydrobia é um modelo-chave na investigação da cadeia trófica estuarina de origem bentónica, actuando como um importante canal de transporte de energia para os níveis tróficos superiores, especialmente se considerarmos que Hydrobia é uma importante presa para peixes, aves e caranguejos. O presente estudo tem por objectivos gerais: i) a investigação do controlo ambiental (particularmente da luz e do teor em água do sedimento) e endógeno na migração vertical do MPB e ii) a identificação e potencial utilização de marcadores tróficos (pigmentos e ácidos gordos) úteis à investigação da interacção MPB – Hydrobia em laboratório e em condições naturais, considerando a existência de uma elevada plasticidade trófica por parte da Hydrobia e a elevada densidade populacional que estes organismos podem apresentar. A primeira fase de investigação resultou na comparação do papel dos estímulos ambientais e do controlo endógeno nos padrões de comportamento migratório vertical do microfitobentos, demonstrando a existência de um controlo essencialmente endógeno na formação e desintegração do biofilme superficial. A regulação e manutenção da biomassa à superfície do sedimento são claramente controladas pela variação dos factores ambientais, em especial da luz, cuja presença é essencial à formação total do biofilme microalgal à superfície do sedimento intertidal. Foi proposta uma nova abordagem metodológica com vista à estimativa nãodestrutiva do teor de água de sedimentos intertidais vasosos , possibilitando o estudo da influência da acção do vento no conteúdo hídrico dos sedimentos e o consequente impacto da dessecação na comunidade microfitobêntica. Observou-se que a dessecação provoca efeitos limitantes não só na biomassa superficial mas também na actividade fotossintética dos biofilmes microfitobênticos, conduzindo à diminuição da produtividade primária. No que respeita à dinâmica trófica da interacção MPB - Hydrobia foi estabelecido o uso do pigmento feoforbide a, quantificado nas partículas fecais da fauna, como marcador trófico que permite estimar a quantidade de biomassa de microalgas (clorofila a) incorporada pelos organismos animais.Para tal foi investigada e comprovada a existência de uma relação significativa entre a concentração de feopigmentos excretados e a concentração de clorofila a ingerida. Estes estudos foram desenvolvidos numa primeira fase à escala diária, considerando os efeitos dos ciclos sazonais, dia-noite e maré, e depois com a validação em condições naturais, numa escala mensal. A taxa de ingestão média de indivíduos de H. ulvae varia ao longo do dia, com o máximo em torno dos períodos diurnos de maré baixa, o que pode estar relacionado com a disponibilidade de MPB. As taxas de ingestão (TI) de H. ulvae variam ainda em função da estação do ano (TI verão > TI primavera) e em função da densidade de indivíduos (> densidade, < ingestão). Verificou-se um efeito negativo na concentração de clorofila disponível após herbívoria independentemente da densidade de indivíduos. Finalmente, a comparação dos perfis de ácidos gordos de H. ulvae provenientes de diferentes habitats com os perfis de potenciais fontes alimentares permitiu demonstrar que os ácidos gordos são ferramentas úteis na identificação do habitat ocupado por estes organismos. No entanto, apesar da ocupação de diferentes habitats e da integração de múltiplas fontes de produção primária na sua dieta foram sempre observados significativos níveis de ácidos gordos específicos de microalgas (em particular diatomáceas), reforçando o papel importante das comunidades de microalgas bênticas na dieta das populações de H. ulvae.
Resumo:
Environmental transport of pollutants comprises distinct processes such as volatilization, leaching and surface runoff. Sorption is one of the most important phenomena that affects leaching, and thus the fate of hydrophobic organic pollutants in soils and also control their distribution in the soil/water environment. The work developed focuses the optimization of analytical techniques for monitoring the sorption behaviour of organic pollutants, 17α- ethinylestradiol (EE2) and atrazine, and their fate in aqueous environment. Initially, the development of several analytical techniques, such as micellar electrokinetic chromatography, spectral deconvolution, using UV-Vis and fluorescence spectroscopy, and also enzyme linked immunosorbent assay was performed. Optimization, method performance and recovery tests are described and results discussed. Moreover, in order to evaluate the applicability of the previously optimized method, atrazine and EE2 sorption to soil samples was performed. The work developed provide several options, in terms of methodology to follow sorption of atrazine onto soils, however the choice depends on the laboratory conditions and on the analyst preferences. The advantages and disadvantages of each methodology should be evaluated first. The second part of this work consisted in the sorption behaviour study of those two different hydrophobic organic pollutants onto different soil samples. Soil organic matter chemical characterization, being essential to understand the binding mechanism responsible for the interactions, was made. The results of atrazine binding to organic matter pointed out that carboxyl units and aromaticrich organic matter are the most efficient binding agents for atrazine. EE2 adsorbs strongly to soil organic matter and is mainly stabilized by hydrophobic interactions, through aromatic nuclei face to face with surface and/or another EE2 molecule association. Farmyard manure soil contains higher aromatic and carboxyl units, indicating that this type of manure can be effectively used to minimize the residual toxicity of EE2 and atrazine present in soils, increasing the sorption and reducing leaching onto water resources. Since the final destination of organic pollutants can be ground, surface and/or waste water, atrazine and 17α-ethinylestradiol were quantified in several water samples.
Resumo:
Moisture and heat management properties of Hemp and Stone Wool insulations were studied by mounting them between a hot and a cold climate chamber. Both insulations were exposed to identical hygrothermal boundary conditions. Quasi steady state and dynamic tests were carried out at a range of relative humidity exposures. The likelihood of interstitial condensation was assessed and equivalent thermal conductivity values of the insulations were determined. The adsorption-desorption isotherms of the insulations were also determined in a dynamic vapour sorption (DVS) instrument. It was observed that the likelihood of condensation was higher in Stone Wool insulation than in Hemp insulation. Hemp insulation performed better in managing moisture due to its high hygric inertia and water absorption capacity. It was observed that the equivalent thermal conductivity of Stone Wool insulation was dependent on enthalpy flow and phase change of moisture. The equivalent thermal conductivity of Hemp insulation was close to its declared thermal conductivity in dynamic conditions when high relative humidity exposures were transient. In quasi steady state boundary conditions, when the insulation was allowed to reach the equilibrium moisture content at ranges of relative humidity, there was a moisture dependent increase of thermal conductivity in Hemp insulation.
Resumo:
Environmental engineering is a core component of most construction and surveying undergraduate courses. It is generally accepted that students on these courses should have an understanding of thermal comfort, heat transfer, condensation, lighting, noise transmission and acoustics. Experiments are essential in developing students’ awareness and understanding of the underlying physical concepts which drive environmental engineering solutions. Traditionally these experiments have been conducted by students working in small groups in laboratories. However, increasing student numbers and, in particular, the growth in part time study, have placed significant additional demands on limited laboratory resources. The availability of reasonably priced, simple, hand-held equipment has made it possible for students to conduct experiments outside the confines of the laboratory. Furthermore, various professional software packages (some of which are freely available online) enable the resultant data to be further developed and analysed in conjunction with the conventional textbook approach. This paper examines these alternative approaches to the traditional laboratory experiment. An assessment is provided of the types of experiment which are both possible and appropriate, and the efficacy of these approaches is considered.
Resumo:
This investigation has three purposes I to make a comparative chemical study on sediment cores collected for Lake Lisgar (man-made lake in an urban center) and Lake Hunger (natural basin in a rural community) encompassing the time since European settlement I to determine the postglacial chemical history of Lake Hunger, and to determine the vegetational history of the Lake Hunger area from postglacial time to the present. The minus 80 mesh fraction of 108 soil samples and 18 stream sediment samples collected in the vicinity of Lakes' Lisgar and Hunger were analyzed for cold hydrochloric acid soluble lead, zinc, nickel, cobalt, copper, aluminum, sodium, potassium, calcium, magnesium, iron and manganese. Lacustrine sediments from 5 boreholes in the Lake Lisgar basin were collected. Boreholes 1, 2, 3, and 4 were analyzed for palynological and chemical information and Borehole 5 was subjected to pollen and ostracode analysis. Lacustrine sediments from 6 boreholes in the Lake Hunger basin were collected. Palyno- -logical and chemical analysis were performed on Boreholes 1, 2, 3, 4, and 6 and Borehole 5 was analyzed for pollen. In addition, radiocarbon dates were obtained on sediment samples from Boreholes 4 and 5. A total of 8 surface samples were collected from the margins of the Lake Hunger basin and these were chemically analyzed in the laboratory. All of the lacustrine sediments were ashed and analyzed for cold hydrochloric acid soluble lead, zinc, nickel, cobalt, copper, aluminum, sodium, potassium, calcium, magnesium, iron and manganese using a Perkin Elmer 40) Atomic Absorption spectrophotometer. The results . obtained for the 12 elements were expressed as parts per million in dry sediments. It was found that man's influence on the element distribution patterns in the sediments of Lake Lisgar appeared to be related to his urbanizing developments within the lake vicinity, whereas, the rural developments in the vicinity of lake Hunger appeared to have had little effect on the element distribution patterns in the lake sediments. The distribution patterns of lead, zinc, nickel, cobalt, aluminum, magnesium, sodium and potassium are similar to the % ash curve throughout postglacial time indicating that the rate of erosion in the drainage basin is the main factor which controls the concentration of these elements in the sediments of Lake Hunger. The vegetational history, from palynological analysis, of Lake Hunger from postglacial time to the present includes the following stages: tundra, open spruce forest, closed boreal forest, deciduous forest and the trend towards the re-establishment of pine following the clearing of land and the subsequent settlement of the Lake Hunger area by European settlers. The concentrations of some elements (cobalt, nickel, iron, manganese, calcium, magnesium, sodium and potassium) in the sediments of Lake Hunger appears to be higher during pre-cultural compared to post-cultural times. At least one complete postglacial record of the chemical history within a lake basin is necessary in order to accurately assess man's effects on his environment.