864 resultados para Knowledge Networks
Resumo:
Management scholars and practitioners emphasize the importance of the size and diversity of a knowledge worker's social network. Constraints on knowledge workers’ time and energy suggest that more is not always better. Further, why and how larger networks contribute to valuable outcomes deserves further understanding. In this study, we offer hypotheses to shed insight on the question of the diminishing returns of large networks and the specific form of network diversity that may contribute to innovative performance among knowledge workers. We tested our hypotheses using data collected from 93 R&D engineers in a Sino-German automobile electronics company located in China. Study findings identified an inflection point, confirming our hypothesis that the size of the knowledge worker's egocentric network has an inverted U-shaped effect on job performance. We further demonstrate that network dispersion richness (the number of cohorts that the focal employee has connections to) rather than network dispersion evenness (equal distribution of ties across the cohorts) has more influence on the knowledge worker's job performance. Additionally, we found that the curvilinear effect of network size is fully mediated by network dispersion richness. Implications for future research on social networks in China and Western contexts are discussed.
Resumo:
Recent management research has evidenced the significance of organizational social networks, and communication is believed to impact the interpersonal relationships. However, we have little knowledge on how communication affects organizational social networks. This paper studies the dynamics between organizational communication patterns and the growth of organizational social networks. We propose an organizational social network growth model, and then collect empirical data to test model validity. The simulation results agree well with the empirical data. The results of simulation experiments enrich our knowledge on communication with the findings that organizational management practices that discourage employees from communicating within and across group boundaries have disparate and significant negative effect on the social network’s density, scalar assortativity and discrete assortativity, each of which correlates with the organization’s performance. These findings also suggest concrete measures for management to construct and develop the organizational social network.
Resumo:
Secure communications in wireless sensor networks operating under adversarial conditions require providing pairwise (symmetric) keys to sensor nodes. In large scale deployment scenarios, there is no prior knowledge of post deployment network configuration since nodes may be randomly scattered over a hostile territory. Thus, shared keys must be distributed before deployment to provide each node a key-chain. For large sensor networks it is infeasible to store a unique key for all other nodes in the key-chain of a sensor node. Consequently, for secure communication either two nodes have a key in common in their key-chains and they have a wireless link between them, or there is a path, called key-path, among these two nodes where each pair of neighboring nodes on this path have a key in common. Length of the key-path is the key factor for efficiency of the design. This paper presents novel deterministic and hybrid approaches based on Combinatorial Design for deciding how many and which keys to assign to each key-chain before the sensor network deployment. In particular, Balanced Incomplete Block Designs (BIBD) and Generalized Quadrangles (GQ) are mapped to obtain efficient key distribution schemes. Performance and security properties of the proposed schemes are studied both analytically and computationally. Comparison to related work shows that the combinatorial approach produces better connectivity with smaller key-chain sizes.
Resumo:
Key distribution is one of the most challenging security issues in wireless sensor networks where sensor nodes are randomly scattered over a hostile territory. In such a sensor deployment scenario, there will be no prior knowledge of post deployment configuration. For security solutions requiring pairwise keys, it is impossible to decide how to distribute key pairs to sensor nodes before the deployment. Existing approaches to this problem are to assign more than one key, namely a key-chain, to each node. Key-chains are randomly drawn from a key-pool. Either two neighboring nodes have a key in common in their key-chains, or there is a path, called key-path, among these two nodes where each pair of neighboring nodes on this path has a key in common. Problem in such a solution is to decide on the key-chain size and key-pool size so that every pair of nodes can establish a session key directly or through a path with high probability. The size of the key-path is the key factor for the efficiency of the design. This paper presents novel, deterministic and hybrid approaches based on Combinatorial Design for key distribution. In particular, several block design techniques are considered for generating the key-chains and the key-pools.
Resumo:
The rapid growth of services available on the Internet and exploited through ever globalizing business networks poses new challenges for service interoperability. New services, from consumer “apps”, enterprise suites, platform and infrastructure resources, are vying for demand with quickly evolving and overlapping capabilities, and shorter cycles of extending service access from user interfaces to software interfaces. Services, drawn from a wider global setting, are subject to greater change and heterogeneity, demanding new requirements for structural and behavioral interface adaptation. In this paper, we analyze service interoperability scenarios in global business networks, and propose new patterns for service interactions, above those proposed over the last 10 years through the development of Web service standards and process choreography languages. By contrast, we reduce assumptions of design-time knowledge required to adapt services, giving way to run-time mismatch resolutions, extend the focus from bilateral to multilateral messaging interactions, and propose declarative ways in which services and interactions take part in long-running conversations via the explicit use of state.
Resumo:
Reasoning with uncertain knowledge and belief has long been recognized as an important research issue in Artificial Intelligence (AI). Several methodologies have been proposed in the past, including knowledge-based systems, fuzzy sets, and probability theory. The probabilistic approach became popular mainly due to a knowledge representation framework called Bayesian networks. Bayesian networks have earned reputation of being powerful tools for modeling complex problem involving uncertain knowledge. Uncertain knowledge exists in domains such as medicine, law, geographical information systems and design as it is difficult to retrieve all knowledge and experience from experts. In design domain, experts believe that design style is an intangible concept and that its knowledge is difficult to be presented in a formal way. The aim of the research is to find ways to represent design style knowledge in Bayesian net works. We showed that these networks can be used for diagnosis (inferences) and classification of design style. The furniture design style is selected as an example domain, however the method can be used for any other domain.
Resumo:
Key distribution is one of the most challenging security issues in wireless sensor networks where sensor nodes are randomly scattered over a hostile territory. In such a sensor deployment scenario, there will be no prior knowledge of post deployment configuration. For security solutions requiring pair wise keys, it is impossible to decide how to distribute key pairs to sensor nodes before the deployment. Existing approaches to this problem are to assign more than one key, namely a key-chain, to each node. Key-chains are randomly drawn from a key-pool. Either two neighbouring nodes have a key in common in their key-chains, or there is a path, called key-path, among these two nodes where each pair of neighbouring nodes on this path has a key in common. Problem in such a solution is to decide on the key-chain size and key-pool size so that every pair of nodes can establish a session key directly or through a path with high probability. The size of the key-path is the key factor for the efficiency of the design. This paper presents novel, deterministic and hybrid approaches based on Combinatorial Design for key distribution. In particular, several block design techniques are considered for generating the key-chains and the key-pools. Comparison to probabilistic schemes shows that our combinatorial approach produces better connectivity with smaller key-chain sizes.
Resumo:
Secure communications in distributed Wireless Sensor Networks (WSN) operating under adversarial conditions necessitate efficient key management schemes. In the absence of a priori knowledge of post-deployment network configuration and due to limited resources at sensor nodes, key management schemes cannot be based on post-deployment computations. Instead, a list of keys, called a key-chain, is distributed to each sensor node before the deployment. For secure communication, either two nodes should have a key in common in their key-chains, or they should establish a key through a secure-path on which every link is secured with a key. We first provide a comparative survey of well known key management solutions for WSN. Probabilistic, deterministic and hybrid key management solutions are presented, and they are compared based on their security properties and re-source usage. We provide a taxonomy of solutions, and identify trade-offs in them to conclude that there is no one size-fits-all solution. Second, we design and analyze deterministic and hybrid techniques to distribute pair-wise keys to sensor nodes before the deployment. We present novel deterministic and hybrid approaches based on combinatorial design theory and graph theory for deciding how many and which keys to assign to each key-chain before the sensor network deployment. Performance and security of the proposed schemes are studied both analytically and computationally. Third, we address the key establishment problem in WSN which requires key agreement algorithms without authentication are executed over a secure-path. The length of the secure-path impacts the power consumption and the initialization delay for a WSN before it becomes operational. We formulate the key establishment problem as a constrained bi-objective optimization problem, break it into two sub-problems, and show that they are both NP-Hard and MAX-SNP-Hard. Having established inapproximability results, we focus on addressing the authentication problem that prevents key agreement algorithms to be used directly over a wireless link. We present a fully distributed algorithm where each pair of nodes can establish a key with authentication by using their neighbors as the witnesses.
Resumo:
The communal nature of knowledge production predicts the importance of creating learning organisations where knowledge arises out of processes that are personal, social, situated and active. It follows that workplaces must provide both formal and informal learning opportunities for interaction with ideas and among individuals. This grounded theory for developing contemporary learning organisations harvests insights from the knowledge management, systems sciences, and educational learning literatures. The resultant hybrid theoretical framework informs practical application, as reported in a case study that harnesses the accelerated information exchange possibilities enabled through web 2.0 social networking and peer production technologies. Through complementary organisational processes, 'meaning making' is negotiated in formal face-to-face meetings supplemented by informal 'boundary spanning' dialogue. The organisational capacity building potential of this participatory and inclusive approach is illustrated through the example of the Dr. Martin Luther King, Jr. Library in San Jose, California, USA. As an outcome of the strategic planning process at this joint city-university library, communication, decision-making, and planning structures, processes, and systems were re-invented. An enterprise- level redesign is presented, which fosters contextualising information interactions for knowledge sharing and community building. Knowledge management within this context envisions organisations as communities where knowledge, identity, and learning are situated. This framework acknowledges the social context of learning - i.e., that knowledge is acquired and understood through action, interaction, and sharing with others. It follows that social networks provide peer-to-peer enculturation through intentional exchange of tacit information made explicit. This, in turn, enables a dynamic process experienced as a continuous spiral that perpetually elevates collective understanding and enables knowledge creation.
Resumo:
Over the past few decades, biodiesel produced from oilseed crops and animal fat is receiving much attention as a renewable and sustainable alternative for automobile engine fuels, and particularly petroleum diesel. However, current biodiesel production is heavily dependent on edible oil feedstocks which are unlikely to be sustainable in the longer term due to the rising food prices and the concerns about automobile engine durability. Therefore, there is an urgent need for researchers to identify and develop sustainable biodiesel feedstocks which overcome the disadvantages of current ones. On the other hand, artificial neural network (ANN) modeling has been successfully used in recent years to gain new knowledge in various disciplines. The main goal of this article is to review recent literatures and assess the state of the art on the use of ANN as a modeling tool for future generation biodiesel feedstocks. Biodiesel feedstocks, production processes, chemical compositions, standards, physio-chemical properties and in-use performance are discussed. Limitations of current biodiesel feedstocks over future generation biodiesel feedstock have been identified. The application of ANN in modeling key biodiesel quality parameters and combustion performance in automobile engines is also discussed. This review has determined that ANN modeling has a high potential to contribute to the development of renewable energy systems by accelerating biodiesel research.
Resumo:
Toxic blooms of Lyngbya majuscula occur in coastal areas worldwide and have major ecological, health and economic consequences. The exact causes and combinations of factors which lead to these blooms are not clearly understood. Lyngbya experts and stakeholders are a particularly diverse group, including ecologists, scientists, state and local government representatives, community organisations, catchment industry groups and local fishermen. An integrated Bayesian Network approach was developed to better understand and model this complex environmental problem, identify knowledge gaps, prioritise future research and evaluate management options.
Resumo:
Forming peer alliances to share and build knowledge is an important aspect of community arts practice, and these co-creation processes are increasingly being mediated by the internet. This paper offers guidance for practitioners who are interested in better utilising the internet to connect, share, and make new knowledge. It argues that new approaches are required to foster the organising activities that underpin online co-creation, building from the premise that people have become increasingly networked as individuals rather than in groups (Rainie and Wellman 2012: 6), and that these new ways of connecting enable new modes of peer-to-peer production and exchange. This position advocates that practitioners move beyond situating the internet as a platform for dissemination and a tool for co-creating media, to embrace its knowledge collaboration potential. Drawing on a design experiment I developed to promote online knowledge co-creation, this paper suggests three development phases – developing connections, developing ideas, and developing agility – to ground six methods. They are: switching and routing, engaging in small trades of ideas with networked individuals; organising, co-ordinating networked individuals and their data; beta-release, offering ‘beta’ artifacts as knowledge trades; beta-testing, trialing and modifying other peoples ‘beta’ ideas; adapting, responding to technological disruption; and, reconfiguring, embracing opportunities offered by technological disruption. These approaches position knowledge co-creation as another capability of the community artist, along with co-creating art and media.
Resumo:
Introduction Informal caring networks contribute significantly to end-of-life (EOL) care in the community. However, to ensure that these networks are sustainable, and unpaid carers are not exploited, primary carers need permission and practical assistance to gather networks together and negotiate the help they need. Our aim in this study was to develop an understanding of how formal and informal carers work together when care is being provided in a dying person's home. We were particularly interested in formal providers’ perceptions and knowledge of informal networks of care and in identifying barriers to the networks working together. Methods Qualitative methods, informed by an interpretive approach, were used. In February-July 2012, 10 focus groups were conducted in urban, regional, and rural Australia comprising 88 participants. Findings Our findings show that formal providers are aware, and supportive, of the vital role informal networks play in the care of the dying at home. A number of barriers to formal and informal networks working together more effectively were identified. In particular, we found that the Australian policy of health-promoting palliative is not substantially translating to practice. Conclusion Combinations of formal and informal caring networks are essential to support people and their primary carers. Formal service providers do little to establish, support, or maintain the informal networks although there is much goodwill and scope for them to do so. Further re-orientation towards a health-promoting palliative care and community capacity building approach is suggested.
Resumo:
Realizing the promise of molecularly targeted inhibitors for cancer therapy will require a new level of knowledge about how a drug target is wired into the control circuitry of a complex cellular network. Here we review general homeostatic principles of cellular networks that enable the cell to be resilient in the face of molecular perturbations, while at the same time being sensitive to subtle input signals. Insights into such mechanisms may facilitate the development of combination therapies that take advantage of the cellular control circuitry, with the aim of achieving higher efficacy at a lower drug dosage and with a reduced probability of drug-resistance development.