140 resultados para Knees.
Resumo:
The authors report on bilateral simultaneous knee arthroplasty in a 40-year-old male patient with haemophilia A, high inhibitor titre and an aneurysma spurium of the right popliteal artery. Both knees showed a fixed flexion deformity of 20 degrees. To build up haemostasis, treatment with activated prothrombin complex concentrate (APCC) and recombinant activated factor seven (rFVIIa) was initiated preoperatively. A tourniquet was used on both sides during the operation and factor VIII (FVIII) was administered to further correct coagulopathy. On the eleventh postoperative day the patient complained of increasing pain and pressure in the right knee. An ultrasound suggested aneurysm, which was confirmed by substraction angiography. Under the protection of rFVIIa the aneurysm could be coiled and further rehabilitation was uneventful. At one year post-op the patient presented a range of motion of 90/5/0 degrees for both knees and had returned to full time office work. This case indicates that haemophiliacs with high antibody titre and destruction of both knees can be operated on in one session in order to diminish the operative risk of two consecutive surgical procedures, thus allowing an effective rehabilitation programme. Because of the significant frequency of popliteal aneurysms, preoperative angiography is recommended.
Resumo:
One of the challenges for structural engineers during design is considering how the structure will respond to crowd-induced dynamic loading. It has been shown that human occupants of a structure do not simply add mass to the system when considering the overall dynamic response of the system, but interact with it and may induce changes of the dynamic properties from those of the empty structure. This study presents an investigation into the human-structure interaction based on several crowd characteristics and their effect on the dynamic properties of an empty structure. The dynamic properties including frequency, damping, and mode shapes were estimated for a single test structure by means of experimental modal analysis techniques. The same techniques were utilized to estimate the dynamic properties when the test structure was occupied by a crowd with different combinations of size, posture, and distribution. The goal of this study is to isolate the occupant characteristics in order to determine the significance of each to be considered when designing new structures to avoid crowd serviceability issues. The results are presented and summarized based on the level of influence of each characteristic. The posture that produces the most significant effects based on the scope of this research is standing with bent knees with a maximum decrease in frequency of the first mode of the empty structure by 32 percent atthe highest mass ratio. The associated damping also increased 36 times the damping of the empty structure. In addition to the analysis of the experimental data, finite element models and a two degree-of-freedom model were created. These models were used to gain an understanding of the test structure, model a crowd as an equivalent mass, and also to develop a single degree-of-freedom (SDOF) model to best represent a crowd of occupants based on the experimental results. The SDOF models created had an averagefrequency of 5.0 Hz, within the range presented in existing biomechanics research, and combined SDOF systems of the test structure and crowd were able to reproduce the frequency and damping ratios associated with experimental tests. Results of this study confirmed the existence of human-structure interaction andthe inability to simply model a crowd as only additional mass. The two degree-offreedom model determined was able to predict the change in natural frequency and damping ratio for a structure occupied by multiple group sizes in a single posture. These results and model are the preliminary steps in the development of an appropriate methodfor modeling a crowd in combination with a more complex FE model of the empty structure.
Resumo:
Unsightly fat knees are a frustrating aesthetic deformity exacerbated by genetic predisposition and resistance to diet. This article reports our experience with laser-assisted lipolysis (LAL) in knee remodelling.
Resumo:
As lightweight and slender structural elements are more frequently used in the design, large scale structures become more flexible and susceptible to excessive vibrations. To ensure the functionality of the structure, dynamic properties of the occupied structure need to be estimated during the design phase. Traditional analysis method models occupants simply as an additional mass; however, research has shown that human occupants could be better modeled as an additional degree-of- freedom. In the United Kingdom, active and passive crowd models are proposed by the Joint Working Group as a result of a series of analytical and experimental research. It is expected that the crowd models would yield a more accurate estimation to the dynamic response of the occupied structure. However, experimental testing recently conducted through a graduate student project at Bucknell University indicated that the proposed passive crowd model might be inaccurate in representing the impact on the structure from the occupants. The objective of this study is to provide an assessment of the validity of the crowd models proposed by JWG through comparing the dynamic properties obtained from experimental testing data and analytical modeling results. The experimental data used in this study was collected by Firman in 2010. The analytical results were obtained by performing a time-history analysis on a finite element model of the occupied structure. The crowd models were created based on the recommendations from the JWG combined with the physical properties of the occupants during the experimental study. During this study, SAP2000 was used to create the finite element models and to implement the analysis; Matlab and ME¿scope were used to obtain the dynamic properties of the structure through processing the time-history analysis results from SAP2000. The result of this study indicates that the active crowd model could quite accurately represent the impact on the structure from occupants standing with bent knees while the passive crowd model could not properly simulate the dynamic response of the structure when occupants were standing straight or sitting on the structure. Future work related to this study involves improving the passive crowd model and evaluating the crowd models with full-scale structure models and operating data.
Resumo:
Vibration serviceability is a widely recognized design criterion for assembly-type structures, such as stadiums, that are likely subjected to rhythmic human-induced excitation. Human-induced excitation of a structure occurs from the movement of the occupants such as walking, running, jumping, or dancing. Vibration serviceability is based on the level of comfort that people have with the vibrations of a structure. Current design guidance uses the natural frequency of the structure to assess vibration serviceability. However, a phenomenon known as human-structure interaction suggests that there is a dynamic interaction between the structure and passive occupants, altering the natural frequency of the system. Human-structure interaction is dependent on many factors, including the dynamic properties of the structure, posture of the occupants, and relative size of the crowd. It is unknown if the shift in natural frequency due to humanstructure interaction is significant enough to warrant consideration in the design process. This study explores the interface of both structural and crowd characteristics through experimental testing to determine if human-structure interaction should be considered because of its potential impact on serviceability assessment. An experimental test structure that represents the dynamic properties of a cantilevered stadium structure was designed and constructed. Experimental modal analysis was implemented to determine the dynamic properties of the empty test structure and when occupied with up to seven people arranged in different locations and postures. Comparisons of the dynamic properties were made between the empty and occupied testing configurations and analytical results from the use of a dynamic crowd model recommended from the Joint Working Group of Europe. Data trends lead to the development of a refined dynamic crowd model. This dynamic model can be used in conjunction with a finite element model of the test structure to estimate the dynamic influence due to human-structure interaction due to occupants standing with straight knees. In the future, the crowd model will be refined and can aid in assessing the dynamic properties of in-service stadium structures.
Resumo:
A total knee arthroplasty performed with navigation results in more accurate component positioning with fewer outliers. It is not known whether image-based or image-free-systems are preferable and if navigation for only one component leads to equal accuracy in leg alignment than navigation of both components. We evaluated the results of total knee arthroplasties performed with femoral navigation. We studied 90 knees in 88 patients who had conventional total knee arthroplasties, image-based total knee arthroplasties, or total knee arthroplasties with image-free navigation. We compared patients' perioperative times, component alignment accuracy, and short-term outcomes. The total surgical time was longer in the image-based total knee arthroplasty group (109 +/- 7 minutes) compared with the image-free (101 +/- 17 minutes) and conventional total knee arthroplasty groups (87 +/- 20 minutes). The mechanical axis of the leg was within 3 degrees of neutral alignment, although the conventional total knee arthroplasty group showed more (10.6 degrees ) variance than the navigated groups (5.8 degrees and 6.4 degrees , respectively). We found a positive correlation between femoral component malalignment and the total mechanical axis in the conventional group. Our results suggest image-based navigation is not necessary, and image-free femoral navigation may be sufficient for accurate component alignment.
Resumo:
PURPOSE: The aim of this study was to investigate the effect of magnetization transfer on multislice T(1) and T(2) measurements of articular cartilage. MATERIALS AND METHODS: A set of phantoms with different concentrations of collagen and contrast agent (Gd-DTPA(2-)) were used for the in vitro study. A total of 20 healthy knees were used for the in vivo study. T(1) and T(2) measurements were performed using fast-spin-echo inversion-recovery (FSE-IR) sequence and multi-spin-echo (MSE) sequence, respectively, in both in vitro and in vivo studies. We investigated the difference in T(1) and T(2) values between that measured by single-slice acquisition and that measured by multislice acquisition. RESULTS: Regarding T(1) measurement, a large drop of T(1) in all slices and also a large interslice variation in T(1) were observed when multislice acquisition was used. Regarding T(2) measurement, a substantial drop of T(2) in all slices was observed; however, there was no apparent interslice variation when multislice acquisition was used. CONCLUSION: This study demonstrated that the adaptation of multislice acquisition technique for T(1) measurement using FSE-IR methodology is difficult and its use for clinical evaluation is problematic. In contrast, multislice acquisition for T(2) measurement using MSE was clinically applicable if inaccuracies caused by multislice acquisition were taken into account. J. Magn. Reson. Imaging 2007;26:109-117. (c) 2007 Wiley-Liss, Inc.
Resumo:
OBJECTIVE: To compare the efficacy and safety of intraarticular hylan and 2 hyaluronic acids (HAs) in osteoarthritis (OA) of the knee. METHODS: This was a multicenter, patient-blind, randomized controlled trial in 660 patients with symptomatic knee OA. Patients were randomly assigned to receive 1 cycle of 3 intraarticular injections per knee of 1 of 3 preparations: a high molecular weight cross-linked hylan, a non-cross-linked medium molecular weight HA of avian origin, or a non-cross-linked low molecular weight HA of bacterial origin. The primary outcome measure was the change in the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain score at 6 months. Secondary outcome measures included local adverse events (effusions or flares) in injected knees. During months 7-12, patients were offered a second cycle of viscosupplementation. RESULTS: Pain relief was similar in all 3 groups. The difference in changes between baseline and 6 months between hylan and the combined HAs was 0.1 on the WOMAC pain score (95% confidence interval [95% CI] -0.2, 0.3). No relevant differences were observed in any of the secondary efficacy outcomes, and stratified analyses provided no evidence for differences in effects across different patient groups. There was a trend toward more local adverse events in the hylan group than in the HA groups during the first cycle (difference 2.2% [95% CI -2.4, 6.7]), and this trend became more pronounced during the second cycle (difference 6.4% [95% CI 0.6, 12.2]). CONCLUSION: We found no evidence for a difference in efficacy between hylan and HAs. In view of its higher costs and potential for more local adverse events, we see no rationale for the continued use of hylan in patients with knee OA.
Resumo:
OBJECTIVES: Bone attrition probably constitutes remodeling of the bone, resulting in flattening or depression of the articular surfaces. Defining bone attrition is challenging because it is an accentuation of the normal curvature of the tibial plateaus. We aimed to define bone attrition on magnetic resonance imaging (MRI) of the knee using information from both radiographs and MRIs, and to assess whether bone attrition is common prior to end stage disease osteoarthritis (OA) in the tibio-femoral joint. METHODS: All knees of participants in the community-based sample of the Framingham OA Study were evaluated for bone attrition in radiographs and MRIs. Radiographs were scored based on templates designed to outline the normal contours of the tibio-femoral joint. MRIs were analyzed using the semi-quantitative Whole-Organ Magnetic Resonance Imaging Scoring (WORMS) method. The prevalence of bone attrition was calculated using two different thresholds for MRI scores. RESULTS: Inter-observer agreement for identification of bone attrition was substantial for the radiographs (kappa=0.71, 95% CI 0.67-0.81) and moderate for MRI (kappa=0.56, 95% CI 0.40-0.72). Of 964 knees, 5.7% of the radiographs showed bone attrition. Of these, 91% of MRIs were also read as showing bone attrition. We selected a conservative threshold for bone attrition on MRI scoring (> or = 2 on a 0-3 scale) based on agreement with attrition on the radiograph or when bone attrition on MRI co-occurred with cartilage loss on OA. Using this threshold for bone attrition on MRI, bone attrition was common in knees with OA. For example, in knees with mild OA but no joint space narrowing, 13 of 88 MRIs (14.8%) showed bone attrition. CONCLUSIONS: Using MRI we found that many knees with mild OA without joint narrowing on radiographs had bone attrition, even using conservative definitions. The validity of our definition of bone attrition should be evaluated in further studies. Bone attrition may occur in milder OA and at earlier stages of disease than previously thought.
Resumo:
Nearly half of the US population faces the risk of developing knee osteoarthritis (OA). Both in vitro and in vivo studies can aid in a better understanding of the etiology, progression, and advancement of this debilitating disorder. The knee menisci are fibrocartilagenous structures that aid in the distribution of load, attenuation of shock, alignment and lubrication of the knee. Little is known about the biochemical and morphological changes associated with knee menisci following altered loading and traumatic impaction, and investigations are needed to further elucidate how degradation of this soft tissue advances over time. The biochemical response of porcine meniscal explants was investigated following a single bout of dynamic compression with and without the treatment of the pharmaceutical drug, anakinra (IL-1RA). Dynamic loading led to a strain-dependent response in both anabolic and catabolic gene expression of meniscal explants. By inhibiting the Interleukin-1 pathway with IL-1RA, a marked decrease in several catabolic molecules was found. From these studies, future developments in OA treatments may be developed. The implementation of an in vivo animal model contributes to the understanding of how the knee joint behaves as a whole. A novel closed-joint in vivo model that induces anterior cruciate ligament (ACL) rupture has been developed to better understand how traumatic injury leads to OA. The menisci of knees from three different groups (healthy, ACL transected, and traumatically impacted) were characterized using histomorphometry. The acute and chronic changes within the knee following traumatic impaction were investigated. The works presented in this dissertation have focused on the characterization, implementation, and development of mechanically-induced changes to the knee menisci.
Resumo:
OBJECTIVE: To investigate the ability of delayed gadolinium-enhanced magnetic resonance (MR) imaging of cartilage (dGEMRIC) and T2 mapping to evaluate the quality of repair tissue after microfracture. DESIGN: Twelve knees from 12 goats were studied. An osteochondral defect (diameter, 6mm; depth, 3mm) with microfracture was created in the weight-bearing aspect of both the medial and lateral femoral condyles. Goats were euthanized at 24 weeks (n=6) and 48 weeks (n=6) postsurgery. Pre-contrast R1 (R1pre) and post-contrast R1 (R1post) measurements for dGEMRIC and a pre-contrast T2 measurement for T2 mapping were performed with a 3T MR imaging system. MR imaging findings were compared with histological and biochemical assessments. RESULTS: In native cartilage, significant correlations were observed between the R1post and the glycosaminoglycan (GAG) concentration, as well as DeltaR1 (difference between the R1pre and R1post) and the GAG concentration (P<0.05). In repair tissue, a significant correlation was observed between DeltaR1 and the GAG concentration (P<0.05), but not between the R1post and the GAG concentration. In both repair tissue and native cartilage, no correlation was observed between T2 and the water concentration or between T2 and the hydroxyproline (HP) concentration. A zonal variation of T2 and a clear dependence of T2 on the angles relative to B0 were observed in native cartilage, but not in repair tissue. CONCLUSION: dGEMRIC with DeltaR1 measurement might be useful for the evaluation of the GAG concentration in repair tissue after microfracture. T2 mapping might be useful for the differentiation of repair tissue after microfracture from native cartilage; however, its potential to assess the specific biochemical markers in native cartilage as well as repair tissue may be limited.
Resumo:
BACKGROUND: Long-term results after partial, extended, or complete resection of lateral discoid meniscus in children revealed knee arthritis. The purpose of this study was to evaluate whether the operative approach, arthrotomy or arthroscopy, has an impact on the outcome and the development of arthritis. METHODS: A retrospective comparison of 2 well matching groups totaling 40 children with symptomatic lateral discoid meniscus (48 knees, mean age 8.9 years, 13 male and 27 female patients). Meniscus resection was performed via mini-arthrotomy in group 1 (n=17 patients, 20 knees) and arthroscopically in group 2 (n=23 patients, 28 knees). RESULTS: In the follow-up (mean 57 months in group 1, 62 months in group 2), functional results indicated a trend to better results in the International Knee Documentation Committee score (P=0.12) and in the Lysholm score for group 1 (P=0.13) but not in the Ikeuchi score (P=0.48). The comparison of the radiographic arthritis grading in the follow-up showed no significant arthritis in either group (P=0.22). The overall complication rate was similar in both groups (2/20, 10% in group 1; 3/28, 12% in group 2). CONCLUSIONS: Most likely because of the appropriate visualization of the children's joint and the easier instrumentation, the mini-arthrotomy led to slightly superior results compared with those after arthroscopic resection regarding functional outcome and 5 years after surgery. We can recommend the mini-arthrotomy for the resection of lateral discoid meniscus particularly in young children with narrow joint spaces and for surgeons that are not familiar with arthroscopies of small joints. LEVEL OF EVIDENCE: III (therapeutic study, case series with control group).
Resumo:
BACKGROUND Optimal therapy for anterior cruciate ligament (ACL) rupture in the paediatric population still provokes controversy. Although conservative and operative treatments are both applied, operative therapy is slightly favored. Among available surgical techniques are physeal-sparing reconstruction and transphyseal graft fixation. The aim of this study was to present our mid-term results after transphyseal ACL reconstruction. METHODS Fifteen young patients (mean age=12.8±2.6, range=6.2-15.8years, Tanner stage=2-4) with open physis and traumatic anterior cruciate rupture who had undergone transphyseal ACL reconstruction with unilateral quadriceps tendon graft were prospectively analyzed. All children were submitted to radiological evaluation to determine the presence of clearly open growth plates in both the distal femur and proximal tibia. Postoperatively, all patients were treated according to a standardized rehabilitation protocol and evaluated by radiographic analysis and the Lysholm-Gillquist and IKDC 2000 scores. Their health-related quality of life was measured using the SF-12 PCS (physical component summary) and MCS (mental component summary) questionnaires. RESULTS Mean postoperative follow-up was 4.1years. Mean Lysholm-Gillquist score was 94.0. Thirteen of the 15 knees were considered nearly normal on the IKDC 2000 score. The mean SF-12 questionnaire score was 54.0±4.8 for SF-12 PCS and 59.1±3.7 for SF-12 MCS. No reruptures were observed. Radiological analysis detected one knee with valgus deformity. All patients had a normal gait pattern without restrictions. CONCLUSION Transphyseal reconstruction of the anterior cruciate ligament shows satisfactory mid-term results in the immature patient.
Resumo:
Vibrations, Posture, and the Stabilization of Gaze: An Experimental Study on Impedance Control R. KREDEL, A. GRIMM & E.-J. HOSSNER University of Bern, Switzerland Introduction Franklin and Wolpert (2011) identify impedance control, i.e., the competence to resist changes in position, velocity or acceleration caused by environmental disturbances, as one of five computational mechanisms which allow for skilled and fluent sen-sorimotor behavior. Accordingly, impedance control is of particular interest in situa-tions in which the motor task exhibits unpredictable components as it is the case in downhill biking or downhill skiing. In an experimental study, the question is asked whether impedance control, beyond its benefits for motor control, also helps to stabi-lize gaze what, in turn, may be essential for maintaining other control mechanisms (e.g., the internal modeling of future states) in an optimal range. Method In a 3x2x4 within-subject ANOVA design, 72 participants conducted three tests on visual acuity and contrast (Landolt / Grating and Vernier) in two different postures (standing vs. squat) on a platform vibrating at four different frequencies (ZEPTOR; 0 Hz, 4 Hz, 8 Hz, 12 Hz; no random noise; constant amplitude) in a counterbalanced or-der with 1-minute breaks in-between. In addition, perceived exertion (Borg) was rated by participants after each condition. Results For Landolt and Grating, significant main effects for posture and frequency are re-vealed, representing lower acuity/contrast thresholds for standing and for higher fre-quencies in general, as well as a significant interaction (p < .05), standing for in-creasing posture differences with increasing frequencies. Overall, performance could be maintained at the 0 Hz/standing level up to a frequency of 8 Hz, if bending of the knees was allowed. The fact that this result is not only due to exertion is proved by the Borg ratings showing significant main effects only, i.e., higher exertion scores for standing and for higher frequencies, but no significant interaction (p > .40). The same pattern, although not significant, is revealed for the Vernier test. Discussion Apparently, postures improving impedance control not only turn out to help to resist disturbances but also assist in stabilizing gaze in spite of these perturbations. Con-sequently, studying the interaction of these control mechanisms in complex unpre-dictable environments seems to be a fruitful field of research for the future. References Franklin, D. W., & Wolpert, D. M. (2011). Computational mechanisms of sensorimotor control. Neuron, 72, 425-442.
Resumo:
BACKGROUND Anterior cruciate ligament (ACL) rupture is a common lesion. Current treatment emphasizes arthroscopic ACL reconstruction via a graft, although this approach is associated with potential drawbacks. A new method of dynamic intraligamentary stabilization (DIS) was subjected to biomechanical analysis to determine whether it provides the necessary knee stability for optimal ACL healing. METHODS Six human knees from cadavers were harvested. The patellar tendon, joint capsule and all muscular attachments to the tibia and femur were removed, leaving the collateral and the cruciate ligaments intact. The knees were stabilized and the ACL kinematics analyzed. Anterior-posterior (AP) stability measurements evaluated the knees in the following conditions: (i) intact ACL, (ii) ACL rupture, (iii) ACL rupture with primary stabilization, (iv) primary stabilization after 50 motion cycles, (v) ACL rupture with DIS, and (vi) DIS after 50 motion cycles. RESULTS After primary suture stabilization, average AP laxity was 3.2mm, which increased to an average of 11.26mm after 50 movement cycles. With primary ACL stabilization using DIS, however, average laxity values were consistently lower than those of the intact ligament, increasing from an initial AP laxity of 3.00mm to just 3.2mm after 50 movement cycles. CONCLUSIONS Dynamic intraligamentary stabilization established and maintained close contact between the two ends of the ruptured ACL, thus ensuring optimal conditions for potential healing after primary reconstruction. The present ex vivo findings show that the DIS technique is able to restore AP stability of the knee.