998 resultados para Kinetic Theory
Resumo:
The field of chemical kinetics is an exciting and active field. The prevailing theories make a number of simplifying assumptions that do not always hold in actual cases. Another current problem concerns a development of efficient numerical algorithms for solving the master equations that arise in the description of complex reactions. The objective of the present work is to furnish a completely general and exact theory of reaction rates, in a form reminiscent of transition state theory, valid for all fluid phases and also to develop a computer program that can solve complex reactions by finding the concentrations of all participating substances as a function of time. To do so, the full quantum scattering theory is used for deriving the exact rate law, and then the resulting cumulative reaction probability is put into several equivalent forms that take into account all relativistic effects if applicable, including one that is strongly reminiscent of transition state theory, but includes corrections from scattering theory. Then two programs, one for solving complex reactions, the other for solving first order linear kinetic master equations to solve them, have been developed and tested for simple applications.
Resumo:
Fluvial sediment transport is controlled by hydraulics, sediment properties and arrangement, and flow history across a range of time scales. This physical complexity has led to ambiguous definition of the reference frame (Lagrangian or Eulerian) in which sediment transport is analysed. A general Eulerian-Lagrangian approach accounts for inertial characteristics of particles in a Lagrangian (particle fixed) frame, and for the hydrodynamics in an independent Eulerian frame. The necessary Eulerian-Lagrangian transformations are simplified under the assumption of an ideal Inertial Measurement Unit (IMU), rigidly attached at the centre of the mass of a sediment particle. Real, commercially available IMU sensors can provide high frequency data on accelerations and angular velocities (hence forces and energy) experienced by grains during entrainment and motion, if adequately customized. IMUs are subjected to significant error accu- mulation but they can be used for statistical parametrisation of an Eulerian-Lagrangian model, for coarse sediment particles and over the temporal scale of individual entrainment events. In this thesis an Eulerian-Lagrangian model is introduced and evaluated experimentally. Absolute inertial accelerations were recorded at a 4 Hz frequency from a spherical instrumented particle (111 mm diameter and 2383 kg/m3 density) in a series of entrainment threshold experiments on a fixed idealised bed. The grain-top inertial acceleration entrainment threshold was approximated at 44 and 51 mg for slopes 0.026 and 0.037 respectively. The saddle inertial acceleration entrainment threshold was at 32 and 25 mg for slopes 0.044 and 0.057 respectively. For the evaluation of the complete Eulerian-Lagrangian model two prototype sensors are presented: an idealised (spherical) with a diameter of 90 mm and an ellipsoidal with axes 100, 70 and 30 mm. Both are instrumented with a complete IMU, capable of sampling 3D inertial accelerations and 3D angular velocities at 50 Hz. After signal analysis, the results can be used to parametrize sediment movement but they do not contain positional information. The two sensors (spherical and ellipsoidal) were tested in a series of entrainment experiments, similar to the evaluation of the 111 mm prototype, for a slope of 0.02. The spherical sensor entrained at discharges of 24.8 ± 1.8 l/s while the same threshold for the ellipsoidal sensor was 45.2 ± 2.2 l/s. Kinetic energy calculations were used to quantify the particle-bed energy exchange under fluvial (discharge at 30 l/s) and non-fluvial conditions. All the experiments suggest that the effect of the inertial characteristics of coarse sediments on their motion is comparable to the effect hydrodynamic forces. The coupling of IMU sensors with advanced telemetric systems can lead to the tracking of Lagrangian particle trajectories, at a frequency and accuracy that will permit the testing of diffusion/dispersion models across the range of particle diameters.
Resumo:
The models of teaching social sciences and clinical practice are insufficient for the needs of practical-reflective teaching of social sciences applied to health. The scope of this article is to reflect on the challenges and perspectives of social science education for health professionals. In the 1950s the important movement bringing together social sciences and the field of health began, however weak credentials still prevail. This is due to the low professional status of social scientists in health and the ill-defined position of the social sciences professionals in the health field. It is also due to the scant importance attributed by students to the social sciences, the small number of professionals and the colonization of the social sciences by the biomedical culture in the health field. Thus, the professionals of social sciences applied to health are also faced with the need to build an identity, even after six decades of their presence in the field of health. This is because their ambivalent status has established them as a partial, incomplete and virtual presence, requiring a complex survival strategy in the nebulous area between social sciences and health.
Resumo:
Atomic charge transfer-counter polarization effects determine most of the infrared fundamental CH intensities of simple hydrocarbons, methane, ethylene, ethane, propyne, cyclopropane and allene. The quantum theory of atoms in molecules/charge-charge flux-dipole flux model predicted the values of 30 CH intensities ranging from 0 to 123 km mol(-1) with a root mean square (rms) error of only 4.2 km mol(-1) without including a specific equilibrium atomic charge term. Sums of the contributions from terms involving charge flux and/or dipole flux averaged 20.3 km mol(-1), about ten times larger than the average charge contribution of 2.0 km mol(-1). The only notable exceptions are the CH stretching and bending intensities of acetylene and two of the propyne vibrations for hydrogens bound to sp hybridized carbon atoms. Calculations were carried out at four quantum levels, MP2/6-311++G(3d,3p), MP2/cc-pVTZ, QCISD/6-311++G(3d,3p) and QCISD/cc-pVTZ. The results calculated at the QCISD level are the most accurate among the four with root mean square errors of 4.7 and 5.0 km mol(-1) for the 6-311++G(3d,3p) and cc-pVTZ basis sets. These values are close to the estimated aggregate experimental error of the hydrocarbon intensities, 4.0 km mol(-1). The atomic charge transfer-counter polarization effect is much larger than the charge effect for the results of all four quantum levels. Charge transfer-counter polarization effects are expected to also be important in vibrations of more polar molecules for which equilibrium charge contributions can be large.
Resumo:
to identify salient behavioral, normative, control and self-efficacy beliefs related to the behavior of adherence to oral antidiabetic agents, using the Theory of Planned Behavior. cross-sectional, exploratory study with 17 diabetic patients in chronic use of oral antidiabetic medication and in outpatient follow-up. Individual interviews were recorded, transcribed and content-analyzed using pre-established categories. behavioral beliefs concerning advantages and disadvantages of adhering to medication emerged, such as the possibility of avoiding complications from diabetes, preventing or delaying the use of insulin, and a perception of side effects. The children of patients and physicians are seen as important social references who influence medication adherence. The factors that facilitate adherence include access to free-of-cost medication and taking medications associated with temporal markers. On the other hand, a complex therapeutic regimen was considered a factor that hinders adherence. Understanding how to use medication and forgetfulness impact the perception of patients regarding their ability to adhere to oral antidiabetic agents. medication adherence is a complex behavior permeated by behavioral, normative, control and self-efficacy beliefs that should be taken into account when assessing determinants of behavior.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
This paper deals with the emission of gravitational radiation in the context of a previously studied metric nonsymmetric theory of gravitation. The part coming from the symmetric part of the metric coincides with the mass quadrupole moment result of general relativity. The one associated to the antisymmetric part of the metric involves the dipole moment of the fermionic charge of the system. The results are applied to binary star systems and the decrease of the period of the elliptical motion is calculated.
Resumo:
It is proven that the field equations of a previously studied metric nonsymmetric theory of gravitation do not admit any non-singular stationary solution which represents a field of non-vanishing total mass and non-vanishing total fermionic charge.
Resumo:
The n→π* absorption transition of formaldehyde in water is analyzed using combined and sequential classical Monte Carlo (MC) simulations and quantum mechanics (QM) calculations. MC simulations generate the liquid solute-solvent structures for subsequent QM calculations. Using time-dependent density functional theory in a localized set of gaussian basis functions (TD-DFT/6-311++G(d,p)) calculations are made on statistically relevant configurations to obtain the average solvatochromic shift. All results presented here use the electrostatic embedding of the solvent. The statistically converged average result obtained of 2300 cm-1 is compared to previous theoretical results available. Analysis is made of the effective dipole moment of the hydrogen-bonded shell and how it could be held responsible for the polarization of the solvent molecules in the outer solvation shells.
Resumo:
Lipase from Burkholderia cepacia immobilized on superparamagnetic nanoparticles using adsorption and chemisorption methodologies was efficiently applied as recyclable biocatalyst in the enzymatic kinetic resolution of (RS)-1-(phenyl)ethanols via transesterification reactions. (R)-Esters and the remaining (S)-alcohols were obtained with excellent enantiomeric excess (> 99%), which corresponds to a perfect process of enzymatic kinetic resolution (conversion 50%, E > 200). The transesterification reactions catalysed with B. cepacia lipase immobilized by the glutaraldehyde method showed the best results in terms of reusability, preserving the enzyme activity (conversion 50%, E > 200) for at least 8 successive cycles.
Resumo:
In recent years, we have experienced increasing interest in the understanding of the physical properties of collisionless plasmas, mostly because of the large number of astrophysical environments (e. g. the intracluster medium (ICM)) containing magnetic fields that are strong enough to be coupled with the ionized gas and characterized by densities sufficiently low to prevent the pressure isotropization with respect to the magnetic line direction. Under these conditions, a new class of kinetic instabilities arises, such as firehose and mirror instabilities, which have been studied extensively in the literature. Their role in the turbulence evolution and cascade process in the presence of pressure anisotropy, however, is still unclear. In this work, we present the first statistical analysis of turbulence in collisionless plasmas using three-dimensional numerical simulations and solving double-isothermal magnetohydrodynamic equations with the Chew-Goldberger-Low laws closure (CGL-MHD). We study models with different initial conditions to account for the firehose and mirror instabilities and to obtain different turbulent regimes. We found that the CGL-MHD subsonic and supersonic turbulences show small differences compared to the MHD models in most cases. However, in the regimes of strong kinetic instabilities, the statistics, i.e. the probability distribution functions (PDFs) of density and velocity, are very different. In subsonic models, the instabilities cause an increase in the dispersion of density, while the dispersion of velocity is increased by a large factor in some cases. Moreover, the spectra of density and velocity show increased power at small scales explained by the high growth rate of the instabilities. Finally, we calculated the structure functions of velocity and density fluctuations in the local reference frame defined by the direction of magnetic lines. The results indicate that in some cases the instabilities significantly increase the anisotropy of fluctuations. These results, even though preliminary and restricted to very specific conditions, show that the physical properties of turbulence in collisionless plasmas, as those found in the ICM, may be very different from what has been largely believed.
Resumo:
First-principles scalar relativistic calculations in supercells of 16 atoms are used to represent disordered B2 ordering of Fe(3)Ga in order to observe the effect of Ga-Ga pairs on the electronic structure of this alloy. From a comparison with pure bcc Fe it is observed that the energy position and occupation of e(g) and t(2g) states are largely affected by the Ga-Ga pairs and strengthened intraplane interactions takes place. The results show that a larger hybridization of the conduction band is in the source of the magnetostriction enhancement experimentally observed in Galfenol. (C) 2011 American Institute of Physics. [doi:10.1063/1.3525609]
Resumo:
The purpose of the present theory is to improve Hypoplasticity, especially in relation to reloading processes. This is done by means of two hypoplastic equations (a classical equation along with a new one containing a so-called mnemonic tensor), a cone in stress space and a criterion defining loading, unloading and reloading. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Background: The present work aims at the application of the decision theory to radiological image quality control ( QC) in diagnostic routine. The main problem addressed in the framework of decision theory is to accept or reject a film lot of a radiology service. The probability of each decision of a determined set of variables was obtained from the selected films. Methods: Based on a radiology service routine a decision probability function was determined for each considered group of combination characteristics. These characteristics were related to the film quality control. These parameters were also framed in a set of 8 possibilities, resulting in 256 possible decision rules. In order to determine a general utility application function to access the decision risk, we have used a simple unique parameter called r. The payoffs chosen were: diagnostic's result (correct/incorrect), cost (high/low), and patient satisfaction (yes/no) resulting in eight possible combinations. Results: Depending on the value of r, more or less risk will occur related to the decision-making. The utility function was evaluated in order to determine the probability of a decision. The decision was made with patients or administrators' opinions from a radiology service center. Conclusion: The model is a formal quantitative approach to make a decision related to the medical imaging quality, providing an instrument to discriminate what is really necessary to accept or reject a film or a film lot. The method presented herein can help to access the risk level of an incorrect radiological diagnosis decision.
Resumo:
Introduction: The purpose of this study was to compare the electromyography index of muscle coactivation of the following muscle pairs: posterior deltoid and pectoralis major (PD/PM); triceps brachii and biceps brachii (TB/BB); and serratus anterior and upper trapezius (SA/UT) during three different closed kinetic chain exercises (wall-press, bench-press and push-up) on an unstable surface at the maximal load. Methods: A total of 20 healthy sedentary men participated in the study. Integral linear values were obtained from three sustained contractions of six seconds each for the three proposed exercises. Mean coactivation index values were compared using the mixed-effects linear model, with a five percent significance level. Results: Electromyography indexes of muscle coactivation showed significant differences for the PD/PM and TB/BB muscle pairs. No differences were found between exercises for the SA/UT muscle pair. Conclusion: Our results seem to differ from those of previous studies, which reported that the similarity in exercises performed is responsible for the comparable muscle activation levels.