960 resultados para Key Block Theory
Resumo:
In many business schools, the field of strategic management has been elevated to the same status as more traditional subject areas such as finance, marketing and organizational behaviour. However, the field is rather unclearly delineated at present, as a result of the heavy usage of borrowed theories, a phenomenon we discuss in this article. For strategic management to become a legitimate subject area, truly at par with the more conventional fields taught in business schools, we recommend much stronger selectivity when borrowing theories from other areas of scholarly inquiry than management, as the foundation of empirical work. We propose a new model consisting of seven quality tests to assess whether proper selectivity is being applied when ‘importing’ concepts from other fields than management. Our perspective has major implications both for future, evidence-based strategic management research and for the field's key stakeholders such as strategy teachers, practitioners and policy makers – who rely on research outputs from strategy scholars.
Resumo:
Attention to epistemology, theory use and citation practices are all issues which distinguish academic disciplines from other ways of knowing. Examples from construction research are used to outline and reflect on these issues. In doing so, the discussion provides an introduction to some key issues in social research as well as a reflection on the current state of construction research as a field. More specifically, differences between positivist and interpretivist epistemologies, the role of theory in each and their use by construction researchers are discussed. Philosophical differences are illustrated by appeal to two published construction research articles by Reichstein et al. and Harty on innovation (Reichstein, Salter and Gann, 2005; Harty, 2008). An analysis of citations for each highlights different cumulativity strategies. The potential contribution of mixed research programmes, combining positivist and interpretivist research, is evaluated. The paper should be of interest to early researchers and to scholars concerned with the ongoing development of construction research as an academic field.
Resumo:
The stability of ternary blends of two immiscible homopolymers and a block copolymer compatiblizer depends crucially on the effective interaction between the copolymermonolayers that form between the unlike homopolymer domains. Here, the interaction is calculated for blends involving A and B homopolymers of equal size with ABABdiblock copolymers of symmetric composition using both self-consistent field theory (SCFT) and strong-segregation theory (SST). If the homopolymers are larger than the copolymer molecules, an attractive interaction is predicted which would destroy the blend. This conclusion coupled with considerations regarding the elastic properties of the monolayer suggests that the optimum size of the homopolymer molecules is about 80% that of the copolymer molecule. A detailed examination of the theory demonstrates that the attraction results from the configurational entropy loss of the homopolymer molecules trapped between the copolymermonolayers. We conclude by suggesting how the monolayers can be altered in order to suppress this attraction and thus improve compatiblization.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This article describes a methodological approach to conditional reasoning in online asynchronous learning environments such as Virtual-U VGroups, developed by SFU, BC, Canada, consistent with the notion of meaning implication: If part of a meaning C is embedded in B and a part of a meaning B is embedded in A, then A implies C in terms of meaning [Piaget 91]. A new transcript analysis technique was developed to assess the flows of conditional meaning implications and to identify the occurrence of hypotheses and connections among them in two human science graduate mixed-mode online courses offered in the summer/spring session of 1997 by SFU. Flows of conditional meaning implications were confronted with Virtual-U VGroups threads and results of the two courses were compared. Findings suggest that Virtual-U VGroups is a knowledge-building environment although the tree-like Virtual-U VGroups threads should be transformed into neuronal-like threads. Findings also suggest that formulating hypotheses together triggers a collaboratively problem-solving process that scaffolds knowledge-building in asynchronous learning environments: A pedagogical technique and an built-in tool for formulating hypotheses together are proposed. © Springer Pub. Co.
Resumo:
Purpose: The purpose of this paper is to systematically describe the key practical contributions of the theory of constraints (TOC) to outbound (distribution) logistics. Design/methodology/approach: Based on theoretical research, this paper presents the main practical aspects of the approach suggested by TOC to outbound logistics and discusses the assumptions upon which it is based. Findings: This paper corroborates the thesis defended by TOC, according to which the current ways of managing outbound logistics, based mainly on sales forecasts lead to difficulties in handling trade-offs between logistics (stock and transportation) costs and stock-out levels. Research limitations/implications: The reported research is of a theoretical nature. Practical implications: TOC offers a proposal that is complementary in many aspects and very distinguishable in others about the way some key processes and elements of supply chain management (SCM) are managed, especially outbound logistics. Originality/value: Considering the dearth of papers dealing with the conceptual articulation and organization of this subject, the paper contributes to systematize the knowledge currently available about the contributions of the TOC to outbound logistics, highlighting the practical implications of applying TOC to outbound logistics. © Emerald Group Publishing Limited.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We consider general d-dimensional lattice ferromagnetic spin systems with nearest neighbor interactions in the high temperature region ('beta' << 1). Each model is characterized by a single site apriori spin distribution taken to be even. We also take the parameter 'alfa' = ('S POT.4') - 3 '(S POT.2') POT.2' > 0, i.e. in the region which we call Gaussian subjugation, where ('S POT.K') denotes the kth moment of the apriori distribution. Associated with the model is a lattice quantum field theory known to contain a particle of asymptotic mass -ln 'beta' and a bound state below the two-particle threshold. We develop a 'beta' analytic perturbation theory for the binding energy of this bound state. As a key ingredient in obtaining our result we show that the Fourier transform of the two-point function is a meromorphic function, with a simple pole, in a suitable complex spectral parameter and the coefficients of its Laurent expansion are analytic in 'beta'.
Resumo:
There are fibers in the left ventricle (LV) (LV middle network) that in around one third of cases may be considered a true septal fascicle that arises from the common left bundle. Its presence and the evidence that there are 3 points of activation onset in the LV favor the quadrifascicular theory of the intravantricular activation of both ventricles. Since the 70s, different authors have suggested that the block of the left middle fibers (MS)/left septal fascicle may explain different electrocardiographic (ECG) patterns. The 2 hypothetically based criteria that are in some sense contradictory include: a) the lack of septal "q" wave due to first left and later posteriorly shifting of the horizontal plane loop and b) the presence of RS in lead V-2 (V-1-V-2) due to some anterior shifting of the horizontal plane vectorcardiogram loop. However, there are many evidence that the lack of septal q waves can be also explained by predivisional first-degree left bundle-branch block and that the RS pattern in the right precordial leads may be also explained by first-degree right bundle-branch block. The transient nature of these patterns favor the concept that some type of intraventricular conduction disturbance exists but a doubt remains about its location. Furthermore, the RS pattern could be explained by many different normal variants. To improve our understanding whether these patterns are due to MF/left septal fascicle block or other ventricular conduction disturbances (or both), it would be advisable: 1) To perform more histologic studies (heart transplant and necropsy) of the ventricular conduction system; 2) To repeat prior experimental studies using new methodology/technology to isolate the MF; and 3) To change the paradigm: do not try to demonstrate if the block of the fibers produces an ECG change but to study with new electroanatomical imaging techniques, if these ECG criteria previously described correlate or not with a delay of activation in the zone of the LV that receives the activation through these fibers or in other zones. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
In the framework of gauged flavour symmetries, new fermions in parity symmetric representations of the standard model are generically needed for the compensation of mixed anomalies. The key point is that their masses are also protected by flavour symmetries and some of them are expected to lie way below the flavour symmetry breaking scale(s), which has to occur many orders of magnitude above the electroweak scale to be compatible with the available data from flavour changing neutral currents and CP violation experiments. We argue that, actually, some of these fermions would plausibly get masses within the LHC range. If they are taken to be heavy quarks and leptons, in (bi)-fundamental representations of the standard model symmetries, their mixings with the light ones are strongly constrained to be very small by electroweak precision data. The alternative chosen here is to exactly forbid such mixings by breaking of flavour symmetries into an exact discrete symmetry, the so-called proton-hexality, primarily suggested to avoid proton decay. As a consequence of the large value needed for the flavour breaking scale, those heavy particles are long-lived and rather appropriate for the current and future searches at the LHC for quasi-stable hadrons and leptons. In fact, the LHC experiments have already started to look for them.
Resumo:
Coupled-cluster theory in its single-reference formulation represents one of the most successful approaches in quantum chemistry for the description of atoms and molecules. To extend the applicability of single-reference coupled-cluster theory to systems with degenerate or near-degenerate electronic configurations, multireference coupled-cluster methods have been suggested. One of the most promising formulations of multireference coupled cluster theory is the state-specific variant suggested by Mukherjee and co-workers (Mk-MRCC). Unlike other multireference coupled-cluster approaches, Mk-MRCC is a size-extensive theory and results obtained so far indicate that it has the potential to develop to a standard tool for high-accuracy quantum-chemical treatments. This work deals with developments to overcome the limitations in the applicability of the Mk-MRCC method. Therefore, an efficient Mk-MRCC algorithm has been implemented in the CFOUR program package to perform energy calculations within the singles and doubles (Mk-MRCCSD) and singles, doubles, and triples (Mk-MRCCSDT) approximations. This implementation exploits the special structure of the Mk-MRCC working equations that allows to adapt existing efficient single-reference coupled-cluster codes. The algorithm has the correct computational scaling of d*N^6 for Mk-MRCCSD and d*N^8 for Mk-MRCCSDT, where N denotes the system size and d the number of reference determinants. For the determination of molecular properties as the equilibrium geometry, the theory of analytic first derivatives of the energy for the Mk-MRCC method has been developed using a Lagrange formalism. The Mk-MRCC gradients within the CCSD and CCSDT approximation have been implemented and their applicability has been demonstrated for various compounds such as 2,6-pyridyne, the 2,6-pyridyne cation, m-benzyne, ozone and cyclobutadiene. The development of analytic gradients for Mk-MRCC offers the possibility of routinely locating minima and transition states on the potential energy surface. It can be considered as a key step towards routine investigation of multireference systems and calculation of their properties. As the full inclusion of triple excitations in Mk-MRCC energy calculations is computational demanding, a parallel implementation is presented in order to circumvent limitations due to the required execution time. The proposed scheme is based on the adaption of a highly efficient serial Mk-MRCCSDT code by parallelizing the time-determining steps. A first application to 2,6-pyridyne is presented to demonstrate the efficiency of the current implementation.
Resumo:
The Internet of Things (IoT) is the next industrial revolution: we will interact naturally with real and virtual devices as a key part of our daily life. This technology shift is expected to be greater than the Web and Mobile combined. As extremely different technologies are needed to build connected devices, the Internet of Things field is a junction between electronics, telecommunications and software engineering. Internet of Things application development happens in silos, often using proprietary and closed communication protocols. There is the common belief that only if we can solve the interoperability problem we can have a real Internet of Things. After a deep analysis of the IoT protocols, we identified a set of primitives for IoT applications. We argue that each IoT protocol can be expressed in term of those primitives, thus solving the interoperability problem at the application protocol level. Moreover, the primitives are network and transport independent and make no assumption in that regard. This dissertation presents our implementation of an IoT platform: the Ponte project. Privacy issues follows the rise of the Internet of Things: it is clear that the IoT must ensure resilience to attacks, data authentication, access control and client privacy. We argue that it is not possible to solve the privacy issue without solving the interoperability problem: enforcing privacy rules implies the need to limit and filter the data delivery process. However, filtering data require knowledge of how the format and the semantics of the data: after an analysis of the possible data formats and representations for the IoT, we identify JSON-LD and the Semantic Web as the best solution for IoT applications. Then, this dissertation present our approach to increase the throughput of filtering semantic data by a factor of ten.
Resumo:
We present the novel synthesis of two sugar units that are central intermediates for the formation of members of the bicyclo-DNA and -RNA family. The synthesis starts from commercially available 1,2: 5,6-di-O-isopropylidene-alpha-D-glucofuranose. The key step involves the elaboration of a carbocyclic ring in a furanoside by rhodium(I)-catalyzed hydroacylation. Via this pathway, one of the sugar units is available in 8 steps and in an overall yield of 27%, while its deoxy derivative is obtained in 11 steps, which is 5 steps fewer than in our previous synthesis of this compound.