915 resultados para Juvenile dermatomyositis
Resumo:
We conducted laboratory starvation experiments on juvenile chum salmon (Oncorhynchus keta) captured in the neritic marine waters of northern Southeast Alaska in June and July 2003. Temporal changes in fish energy density (whole body energy content [WBEC], cal/g dry weight), percent moisture content, wet weight (g), length (mm), and size-related condition residuals were measured in the laboratory and were then compared to long-term field data. Laboratory water temperatures and salinities averaged 9°C and 32 psu in both months. Trends in response variables were similar for both experimental groups, although sampling intervals were limited in July because fewer fish were available (n= 54) than in June (n=101). Overall, for June (45-d experimental period, 9 intervals), WBEC, wet weight, and condition residuals decreased and percent moisture content increased, whereas fork length did not change. For July (20-d experimental period, 5 intervals), WBEC and condition residuals decreased, percent moisture content and fork length increased, and wet weight did not change. WBEC, percent moisture content, and condition residuals fell outside the norm of longterm data ranges within 10–15 days of starvation, and may be more useful than fork length and wet weight for detecting fish condition responses to suboptimal environments.
Resumo:
Measurements of 18O/16O and 13C/12C ratios in the carbonate of juvenile gray snapper (Lutjanus griseus) sagittal otoliths collected during 2001–2005 from different southern Florida regions indicated significant variations in the ratios between Florida Bay and surrounding areas. Annual differences in isotopic composition were also observed. Classification accuracy of individual otoliths to a region averaged 80% (63% to 96%), thereby enabling the probability of assigning an unknown individual to the appropriate juvenile nursery habitat. Identification of isotopic signatures in the otoliths of gray snapper from Florida Bay and adjacent ecosystems may be important for distinguishing specific portions of the bay that are crucial nursery grounds for juveniles. Separation of gray snapper between geographic regions and nursery sites is possible and has the potential to establish a link between adult gray snapper present on offshore reefs and larvae and juveniles at nursery habitats in Florida Bay or adjacent areas.
Resumo:
T he relative value of pelagic habitat for three size classes of juvenile Pacific ocean perch (Sebastes alutus) was investigated by comparing their abundance and condition in two areas of the Aleutian Islands. Diet, zooplankton biomass, and water column temperatures were examined as potential factors affecting observed differences. Juvenile Pacific ocean perch abundance and condition, and zooplankton biomass varied significantly between areas, whereas juvenile Pacific ocean perch diet varied only by size class. Observed differences in fish condition may have been due to the quantity or quality of pelagic prey items consumed. For the delineation of essential demersal fish habitat, important ecological features of the pelagic habitat must therefore be considered.
Resumo:
Reducing shark bycatch and depredation (i.e., damage caused by sharks to gear, bait, and desired fish species) in pelagic longline fisheries targeting tunas and swordfish is a priority. Electropositive metals (i.e., a mixture of the lanthanide elements lanthanum, cerium, neodymium, and praseodymium) have been shown to deter spiny dogfish (Squalus acanthias, primarily a coastal species) from attacking bait, presumably because of interactions with the electroreceptive system of this shark. We undertook to determine the possible effectiveness of electropositive metals for reducing the interactions of pelagic sharks with longline gear, using sandbar sharks (Carcharhinus plumbeus, family Carcharhinidae) as a model species. The presence of electropositive metal deterred feeding in groups of juvenile sandbar sharks and altered the swimming patterns of individuals in the absence of food motivation (these individuals generally avoided approaching electropositive metal closer than ~100 cm). The former effect was relatively short-lived however; primarily (we assume) because competition with other individuals increased feeding motivation. In field trials with bottom longline gear, electropositive metal placed within ~10 cm of the hooks reduced the catch of sandbar sharks by approximately two thirds, compared to the catch on hooks in the proximity of plastic pieces of similar dimensions. Electropositive metals therefore appear to have the potential to reduce shark interactions in pelagic longline fisheries, although the optimal mass, shape, composition, and distance to baited hooks remain to be determined.
Resumo:
We evaluated habitat quality for juvenile California halibut (Paralichthys californicus) in a Pacific Coast estuary lacking in strong salinity gradients by examining density, recent otolith growth rates, and gut fullness levels of wild-caught and caged juveniles for one year. Juveniles <200 mm standard length were caught consistently in the inner, central, and outer sections of the estuary. The density of juveniles was two times higher in the inner estuary during most of the year, consistent with active habitat selection by part of the population. A generalized linear model indicated temperature, sampling time, and the interaction between salinity and temperature were significantly related to density. However, the model explained only 21% of the variance. Gut fullness levels of wild-caught juveniles were highest during the summer, but recent otolith growth rates were not related to temperature. The proportion of individuals feeding successfully indicated that seasonal differences in food availability are more important than spatial variation in prey abundance in driving feeding success. Feeding success of caged fishes was limited, precluding the use of growth rates as indicators of local habitat quality. However, marginal increment widths were reliable indicators of somatic growth at low growth rates over two-week periods. The relatively high growth rates and abundance of small wild-caught juveniles found throughout the estuary indicates that the entire estuary system has the potential for serving as nursery habitat.
Resumo:
In recent years, a decrease in the abundance of bluefish (Pomatomus saltatrix) has been observed (Fahay et al., 1999; Munch and Conover, 2000) that has led to increased interest in a better understanding the life history of the species. Estimates of several young-of-the-year (YOY) life history characteristics, including the importance and use of estuaries as nursery habitat (Kendall and Walford, 1979) and size-dependant mortality (Hare and Cowen, 1997), are reliant upon the accuracy of growth determination. By using otoliths, it is possible to use back-calculation formulae (BCFs) to estimate the length at certain ages and stages of development for many species of fishes. Use of otoliths to estimate growth in this way can provide the same information as long-term laboratory experiments and tagging studies without the time and expense of rearing or recapturing fish. The difficulty in using otoliths in this way lies in validating that 1) there is constancy in the periodicity of the increment formation, and 2) there is no uncoupling of the relationship between somatic and otolith growth. To date there are no validation studies demonstrating the relationship between otolith growth and somatic growth for bluefish. Daily increment formation in otoliths has been documented for larval (Hare and Cowen, 1994) and juvenile bluefish (Nyman and Conover, 1988). Hare and Cowen (1995) found ageindependent variability in the ratio of otolith size to body length in early age bluefish, although these differences varied between ontogenetic stages. Furthermore, there have been no studies where an evaluation of back-calculation methods has been combined with a validation of otolithderived lengths for juvenile bluefish.
Resumo:
We estimated annual abundance of juvenile blue (Sebastes mystinus), yellowtail (S. f lavidus), and black (S. melanops) rockfish off northern California over 21 years and evaluated the relationship of abundance to oceanographic variables (sea level anomaly, nearshore temperature, and offshore Ekman transport). Although mean annual abundance was highly variable (0.01−181 fish/minute), trends were similar for the three species. Sea level anomaly and nearshore temperature had the strongest relationship with interannual variation in rockfish abundance, and offshore Ekman transport did not correlate with abundance. Oceanographic events occurring in February and March (i.e., during the larval stage) had the strongest relationship with juvenile abundance, which indicates that year-class strength is determined during the larval stage. Also of note, the annual abundance of juvenile yellowtail rockfish was positively correlated with year-class strength of adult yellowtail rockfish; this finding would indicate the importance of studying juvenile abundance surveys for management purposes.
Resumo:
Standard and routine metabolic rates (SMRs and RMRs, respectively) of juvenile sandbar sharks (Carcharhinus plumbeus) were measured over a range of body sizes (n=34) and temperatures normally associated with western Atlantic coastal nursery areas. The mean SMR Q10 (increase in metabolic rate with temperature) was 2.9 ±0.2. Heart rate decreased with increasing body mass but increased with temperature at a Q10 of 1.8−2.2. Self-paired measures of SMR and RMR were obtained for 15 individuals. Routine metabolic rate averaged 1.8 ±0.1 times the SMR and was not correlated with body mass. Assuming the maximum metabolic rate of sandbar sharks is 1.8−2.75 times the SMR (as is observed in other elasmobranch species), sandbar sharks are using between 34% and 100% of their metabolic scope just to sustain their routine continuous activity. This limitation may help to explain their slow individual and population growth rates, as well as the slow recoveries from overfishing of many shark stocks worl
Resumo:
Using a bioenergetics model, we estimated daily ration and seasonal prey consumption rates for six age classes of juvenile sandbar sharks (Carcharhinus plumbeus) in the lower Chesapeake Bay summer nursery area. The model, incorporating habitat and species-specific data on growth rates, metabolic rate, diet composition, water temperature (range 16.8−27.9°C), and population structure, predicted mean daily rations between 2.17 ±0.03 (age-0) and 1.30 ±0.02 (age-5) % body mass/day. These daily rations are higher than earlier predictions for sandbar sharks but are comparable to those for ecologically similar shark species. The total nursery population of sandbar sharks was predicted to consume ~124,000 kg of prey during their 4.5 month stay in the Chesapeake Bay nursery. The predicted consumption rates support the conclusion that juvenile sandbar sharks exert a lesser top-down effect on the Chesapeake Bay ecosystem than do teleost piscivores and hu
Resumo:
Rockfish (Sebastes spp.) juveniles are often difficult to identify by using morphological characters. This study independently applies morphological characters and a key based on mitochondrial restriction site variation to identify juvenile rockf ishes collected in southern California during juvenile rockfish surveys. Twenty-four specimens of Sebastes were examined genetically without knowledge of the morphological assignment. Seventeen fish were identified genetically as S. semicinctus, S. goodei, S. auriculatus, S. jordani, S. levis, S. rastrelliger, and S. saxicola. Identities for the remaining fish were narrowed to two or three species: 1) three fish were either S. carnatus or S. chrysomelas; 2) one fish was either S. chlorosticus, S. eos, or S. rosenblatti; and 3) three fish could have been either S. hopkinsi or S. ovalis, the latter for which we now have distinguishing mitochondrial markers. The genetic and morphological assignments concurred except for the identity of one fish that could only be narrowed down to S. hopkinsi or S. semicinctus by using morphological characters. Genetics excluded more species from multispecies groupings than did the morphological approach, especially species within the subgenus Sebastomus. Species in the genetically unresolvable groups may be similar because of recent divergence or because of interspecies introgression.
Resumo:
Walleye pollock (Theragra chalcogramma) is widely distributed in the North Pacific Ocean and plays an important role in coastal subarctic ecosystems. The Japanese Pacific population of this species is one of the most important demersal fishes for commercial fisheries in northern Japan. The population is distributed along the Pacific coast of Hokkaido and the Tohoku area (Fig. 1), which is the southern limit of distribution of the species in the western North Pacific. In Funka Bay, the main spawning ground for this population, pollock spawn from December to March (Kendall and Nakatani, 1992). Planktonic eggs and larvae are transported into the bay, where juveniles usually remain until late July when they reach 60−85 mm in total length (Hayashi et al., 1968; Nakatani and Maeda, 1987). These juvenile pollock then migrate from Funka Bay eastward to the Doto area off southeastern Hokkaido (Honda et al., 2004). Many studies on eggs, larvae, and juveniles of the species have been conducted in or near Funka Bay, but little information is available on the ecology of the early life stages in the Tohoku area. Hashimoto and Ishito (1991) suggested that eggs are transported from Funka Bay southward to the Tohoku area by the coastal branch of the Oyashio Current, but there has been no study to verify this hypothesis.
Resumo:
The penpoint gunnel (Apodichthys flavidus) is a member of the perciform family Pholidae. Pholids, commonly referred to as gunnels, are eel-like fishes that inhabit the rocky intertidal and subtidal regions of the northern oceans and are often associated with macroalgae, such as Fucus spp. or kelp (Watson, 1996). Gunnels are ecologically important forage fishes that form part of the diet of birds and commercially important groundfish species (Hobson and Sealy, 1985; NMFS1; Golet et al., 2000). The diet of A. flavidus and other pholids comprises primarily harpactacoid copepods, gammarid amphipods, isopods, and other crustaceans (Cross, 1981). Apodichthys flavidus ranges along the west coast of North America from southern California to the Gulf of Alaska (Mecklenburg et al., 2002). Adult A. flavidus are distinguished from other pholids by their total vertebral counts, the presence of a thick and grooved first anal spine, a preanal length that is approximately 60% standard length (SL), and a dark green to light olive coloration (Yatsu, 1981). It is one of the largest pholids (up to 46 cm) and is important in the live fish trade for both home and public aquaria (Froese and Pauly2).
Resumo:
Two studies were conducted in consecutive years over the time period 14 January to 1 July to determine whether labor-savings and fish growth enhancement could be achieved by stocking Tilapia rendalli directly into ponds containing weeds left from a dry period. Six replicates 200 sq. m ponds located at the Malawi National Aquaculture Centre, Domasi were drained, left dry for 63 days and natural growth of weeds was allowed. All ponds were stocked with 200 T. rendalli fingerlings (study 1) or adults (study 2) averaging 4.6 g (40 mm TL) and 47.7 (130 mm TL), respectively. For T. rendalli juveniles, final standing stock, growth and offspring production were significantly (P<0.05) better in fed than in weedy ponds. Average weight of fingerlings were significantly (P<0.05) different between the two treatments. For T. rendalli adults, final standing stock, growth and offspring production were not affected by the presence of weeds.
Resumo:
The major constraint to the development of aquaculture in Nigeria has been the non-availability of fingerlings in required numbers of cultivable species. A specifically designed trap to collect mullet (Liza falcipinnis; Liza grandisquamis) juveniles during high tides was successful in collecting juveniles year-round. The collectors was more successful during night spring tides than during neap tides or daytime collections. Thus, the use of traps, especially in the tidal zones, could provide a cost-effective method of stocking fish farms by collecting juveniles and seed from the natural environment.