356 resultados para JNK
Resumo:
The c-Jun-N-terminal kinase (JNK) pathway has been shown to play an important role in excitotoxic neuronal death and several studies have demonstrated a neuroprotective effect of D-JNKi, a peptide inhibitor of JNK, in various models of cerebral ischemia. We have now investigated the effect of D-JNKi in a model of transient focal cerebral ischemia (90 min) induced by middle cerebral artery occlusion (MCAo) in adult male rats. D-JNKi (0.1 mg/kg), significantly decreased the volume of infarct, 3 days after cerebral ischemia. Sensorimotor and cognitive deficits were then evaluated over a period of 6 or 10 days after ischemia and infarct volumes were measured after behavioral testing. In behavioral studies, D-JNKi improved the general state of the animals as demonstrated by the attenuation of body weight loss and improvement in neurological score, as compared with animals receiving the vehicle. Moreover, D-JNKi decreased sensorimotor deficits in the adhesive removal test and improved cognitive function in the object recognition test. In contrast, D-JNKi did not significantly affect the infarct volume at day 6 and at day 10. This study shows that D-JNKi can improve functional recovery after transient focal cerebral ischemia in the rat and therefore supports the use of this molecule as a potential therapy for stroke.
Resumo:
Introduction: Systemic inflammation in sepsis is initiated by interactions between pathogen molecular motifs and specific host receptors, especially toll-like receptors (TLRs). Flagellin is the main flagellar protein of motile microorganisms and is the ligand of TLR5. The distribution of TLR5 and the actions of flagellin at the systemic level have not been established. Therefore, we determined TLR5 expression and the ability of flagellin to trigger prototypical innate immune responses and apoptosis in major organs from mice. Methods: Male Balb/C mice (n = 80) were injected intravenously with 1-5 mu g recombinant Salmonella flagellin. Plasma and organ samples were obtained after 0.5 to 6 h, for molecular investigations. The expression of TLR5, the activation state of nuclear factor kappa B (NF kappa B) and mitogen-activated protein kinases (MAPKs) [extracellular related kinase (ERK) and c-jun-NH2 terminal kinase (JNK)], the production of cytokines [tumor necrosis alpha (TNF alpha), interleukin-1 beta (IL-1 beta), interleukin-6 (IL-6), macrophage inhibitory protein-2 (MIP-2) and soluble triggering receptor expressed on myeloid cells (TREM-1)], and the apoptotic cleavage of caspase-3 and its substrate Poly(ADP-ribose) polymerase (PARP) were determined in lung, liver, gut and kidney at different time-points. The time-course of plasma cytokines was evaluated up to 6 h after flagellin. Results: TLR5 mRNA and protein were constitutively expressed in all organs. In these organs, flagellin elicited a robust activation of NF kappa B and MAPKs, and induced significant production of the different cytokines evaluated, with slight interorgan variations. Plasma TNF alpha, IL-6 and MIP-2 disclosed a transient peak, whereas IL-1 beta and soluble TREM-1 steadily increased over 6 h. Flagellin also triggered a marked cleavage of caspase-3 and PARP in the intestine, pointing to its ability to promote significant apoptosis in this organ. Conclusions: Bacterial flagellin elicits prototypical innate immune responses in mice, leading to the release of multiple pro-inflammatory cytokines in the lung, small intestine, liver and kidney, and also activates apoptotic signalling in the gut. Therefore, this bacterial protein may represent a critical mediator of systemic inflammation and intestinal barrier failure in sepsis due to flagellated micro-organisms
Resumo:
CARMA1 is a lymphocyte-specific member of the membrane-associated guanylate kinase (MAGUK) family of scaffolding proteins, which coordinate signaling pathways emanating from the plasma membrane. CARMA1 interacts with Bcl10 via its caspase-recruitment domain (CARD). Here we investigated the role of CARMA1 in T cell activation and found that T cell receptor (TCR) stimulation induced a physical association of CARMA1 with the TCR and Bcl10. We found that CARMA1 was constitutively associated with lipid rafts, whereas cytoplasmic Bcl10 translocated into lipid rafts upon TCR engagement. A CARMA1 mutant, defective for Bcl10 binding, had a dominant-negative (DN) effect on TCR-induced NF-kappa B activation and IL-2 production and on the c-Jun NH(2)-terminal kinase (Jnk) pathway when the TCR was coengaged with CD28. Together, our data show that CARMA1 is a critical lipid raft-associated regulator of TCR-induced NF-kappa B activation and CD28 costimulation-dependent Jnk activation.
Resumo:
Brooke-Spiegler syndrome, familial cylindromatosis, and familial trichoepithelioma are autosomal-dominant genetic predispositions for benign tumors of skin appendages caused by mutations in the CYLD gene localized on chromosome 16q12-q13. The encoded protein functions as ubiquitin-specific protease (UBP), which negatively regulates NF-kappaB and c-Jun N-terminal kinase (JNK) signaling. We investigated five families affected with these skin neoplasms and identified four premature stop codons and the novel missense mutation D681G in a family in which 11 of 12 investigated tumors were trichoepitheliomas. CYLD protein harboring this missense mutation had a significant reduced ability to inhibit TNF receptor-associated factor (TRAF)2- and TRAF6-mediated NF-kappaB activation, tumor necrosis factor-alpha (TNFalpha)-induced JNK signaling, and to deubiquitinate TRAF2. CYLD-D681G was coimmunoprecipitated by TRAF2, but was unable to cleave K63-linked polyubiquitin chains. Aspartic acid 681 is highly conserved in CYLD homologues and other members of the UBP family, but does not belong to the Cys and His boxes providing the CYLD catalytic triad (Cys601, His871, and Asp889). As reported previously, the homologous residue D295 of HAUSP/USP-7 forms a hydrogen bond with the C-terminal end of ubiquitin and is important for the enzymatic activity. These results underline that D681 in CYLD is required for cleavage of K63-linked polyubiquitin chains.
Resumo:
c-Jun N-terminal kinases (SAPK/JNKs) are activated by inflammatory cytokines, and JNK signaling is involved in insulin resistance and beta-cell secretory function and survival. Chronic high glucose concentrations and leptin induce interleukin-1beta (IL-1beta) secretion from pancreatic islets, an event that is possibly causal in promoting beta-cell dysfunction and death. The present study provides evidence that chronically elevated concentrations of leptin and glucose induce beta-cell apoptosis through activation of the JNK pathway in human islets and in insulinoma (INS 832/13) cells. JNK inhibition by the dominant inhibitor JNK-binding domain of IB1/JIP-1 (JNKi) reduced JNK activity and apoptosis induced by leptin and glucose. Exposure of human islets to leptin and high glucose concentrations leads to a decrease of glucose-induced insulin secretion, which was partly restored by JNKi. We detected an interplay between the JNK cascade and the caspase 1/IL-1beta-converting enzyme in human islets. The caspase 1 gene, which contains a potential activating protein-1 binding site, was up-regulated in pancreatic sections and in isolated islets from type 2 diabetic patients. Similarly, cultured human islets exposed to high glucose- and leptin-induced caspase 1 and JNK inhibition prevented this up-regulation. Therefore, JNK inhibition may protect beta-cells from the deleterious effects of high glucose and leptin in diabetes.
Resumo:
Résumé Les agents pathogènes responsables d'infection entraînent chez l'hôte deux types de réponses immunes, la première, non spécifique, dite immunité innée, la seconde, spécifique à l'agent concerné, dite immunité adaptative. L'immunité innée, qui représente la première ligne de défense contre les pathogènes, est liée à la reconnaissance par les cellules de l'hôte de structures moléculaires propres aux micro-organismes (« Pathogen-Associated Molecular Patterns », PAMPs), grâce à des récepteurs membranaires et cytoplasmiques (« Pattern Recognition Receptors », PRRs) identifiant de manière spécifique ces motifs moléculaires. Les récepteurs membranaires impliqués dans ce processus sont dénommés toll-like récepteurs, ou TLRS. Lorsqu'ils sont activés par leur ligand spécifique, ces récepteurs activent des voies de signalisation intracellulaires initiant la réponse inflammatoire non spécifique et visant à éradiquer l'agent pathogène. Les deux voies de signalisation impliquées dans ce processus sont la voie des « Mitogen-Activated Protein Kinases » (MAPKs) et celle du « Nuclear Factor kappaB » (NF-κB), dont l'activation entraîne in fine l'expression de protéines de l'inflammation dénommées cytokines, ainsi que certaines enzymes produisant divers autres médiateurs inflammatoires. Dans certaines situations, cette réponse immune peut être amplifiée de manière inadéquate, entraînant chez l'hôte une réaction inflammatoire systémique exagérée, appelée sepsis. Le sepsis peut se compliquer de dysfonctions d'organes multiples (sepsis sévère), et dans sa forme la plus grave, d'un collapsus cardiovasculaire, définissant le choc septique. La défaillance circulatoire du choc septique touche les vaisseaux sanguins d'une part, le coeur d'autre part, réalisant un tableau de «dysfonction cardiaque septique », dont on connaît mal les mécanismes pathogéniques. Les bactéries à Gram négatif peuvent déclencher de tels phénomènes, notamment en libérant de l'endotoxine, qui active les voies de l'immunité innée par son interaction avec un toll récepteur, le TLR4. Outre l'endotoxine, la plupart des bactéries à Gram négatif relâchent également dans leur environnement une protéine, la flagelline, qui est le constituant majeur du flagelle bactérien, organelle assurant la mobilité de ces micro-organismes. Des données récentes ont indiqué que la flagelline active, dans certaines cellules, les voies de l'immunité innée en se liant au récepteur TLRS. On ne connaît toutefois pas les conséquences de l'interaction flagelline-TLRS sur le développement de l'inflammation et des dysfonctions d'organes au cours du sepsis. Nous avons par conséquent élaboré le présent travail en formulant l'hypothèse que la flagelline pourrait déclencher une telle inflammation et représenter ainsi un médiateur potentiel de la dysfonction d'organes au cours du sepsis à Gram négatif, en nous intéressant plus particulièrement àl'inflammation et à la dysfonction cardiaque. Dans la première partie de ce travail, nous avons étudié les effets de la flagelline sur l'activation du NF-κB et des MAPKs, et sur l'expression de cytokines inflammatoires au niveau du myocarde in vitro (cardiomyocytes en culture) et in vivo (injection de flagelline recombinante à des souris). Nous avons observé tout d'abord que le récepteur TLRS est fortement exprimé au niveau du myocarde. Nous avons ensuite démontré que la flagelline active la voie du NF-κB et des MAP kinases (p38 et JNK), stimule la production de cytokines et de chemokines inflammatoires in vitro et in vivo, et entraîne l'activation de polynucléaires neutrophiles dans le tissu cardiaque in vivo. Finalement, au plan fonctionnel, nous avons pu montrer que la flagelline entraîne une dilatation et une réduction aiguë de la contractilité du ventricule gauche chez la souris, reproduisant les caractéristiques de la dysfonction cardiaque septique. Dans la deuxième partie, nous avons déterminé la distribution du récepteur TLRS dans les autres organes majeurs de la souris (poumon, foie, intestin et rein}, et avons caractérisé dans ces organes l'effet de la flagelline sur l'activation du NF-κB et des MAPKs, l'expression de cytokines, et l'induction de l'apoptose. Nous avons démontré que le TLRS est exprimé de façon constitutive dans ces organes, et que l'injection de flagelline y déclenche les cascades de l'immunité innée et de processus apoptotiques. Finalement, nous avons également déterminé que la flagelline entraîne une augmentation significative de multiples cytokines dans le plasma une à six heures après son injection. En résumé, nos données démontrent que la flagelline bactérienne (a) entraîne une inflammation et une dysfonction importantes du myocarde et (b) active de manière très significative les mécanismes d'immunité innée dans les principaux organes et entraîne une réponse inflammatoire systémique. Par conséquent, la flagelline peut représenter un médiateur puissant de l'inflammation et de la dysfonction d'organes, notamment du coeur, au cours du choc septique déclenché par les bactéries à Gram négatif. Summary Pathogenic microorganisms trigger two kinds of immune responses in the host. The first one is immediate and non-specific and is termed innate immunity, whereas the second one, specifically targeted at the invading agent, is termed adaptative immunity. Innate immunity, which represents the first line of defense against invading pathogens, confers the host the ability to recognize molecular structures common to many microbial pathogens, ("Pathogen-Associated Molecular Patterns", PAMPs), through cytosolic or membrane-associated receptors ("Pattern Recognition Receptors", PRRs), the latter being represented by a family of receptors termed "toll-like receptors or TLRs". Once activated by the binding of their specific ligand, these receptors activate intracellular signaling pathways, which initiate the non-specific inflammatory response aimed at eradicating the pathogens. The two pathways implicated in this process are the mitogen-activated protein kinases (MAPK) and the nuclear factor kappa B (NF-κB) signaling pathways, whose activation elicit in fine the expression of inflammatory proteins termed cytokines, as well as various enzymes producing a wealth of additional inflammatory mediators. In some circumstances, the innate immune response can become amplified and dysregulated, triggering an overwhelming systemic inflammatory response in the host, identified as sepsis. Sepsis can be associated with multiple organ dysfunction (severe sepsis), and in its most severe form, with cardiovascular collapse, defming septic shock. The cardiovascular failure associated with septic shock affects blood vessels as well as the heart, resulting in a particular form of acute heart failure termed "septic cardiac dysfunction ", whose pathogenic mechanisms remain partly undefined. Gram-negative bacteria can initiate such phenomena, notably by releasing lipopolysaccharide (LPS), which activates innate immune signaling by interacting with its specific toll receptor, the TLR4. Besides LPS, most Gram-negative bacteria also release flagellin into their environment, which is the main structural protein of the bacterial flagellum, an appendage extending from the outer bacterial membrane, responsible for the motility of the microorganism. Recent data indicated that flagellin activate immune responses upon binding to its receptor, TLRS, in various cell types. However, the role of flagellin/TLRS interaction in the development of inflammation and organ dysfunction during sepsis is not known. Therefore, we designed the present work to address the hypothesis that flagellin might trigger such inflammatory responses and thus represent a potential mediator of organ dysfunction during Gram-negative sepsis, with a particular emphasis on cardiac inflammation and contractile dysfunction. In the first part of this work, we investigated the effects of flagellin on NF-κB and MAPK activation and the generation of pro-inflammatory mediators within the heart in vitro (cultured cardiomyocytes) and in vivo (injection of recombinant flagellin into mice). We first observed that TLRS protein is strongly expressed by the myocardium. We then demonstrated that flagellin activates NF-κB and MAP kinases (p38 and JNK), upregulates the transcription of pro-inflammatory cytokines and chemokines in vitro and in vivo, and stimulates the activation of polymorphonuclear neutrophils within the heart in vivo. Finally, we demonstrated that flagellin triggers acute cardiac dilation, and a significant reduction of left ventricular contractility, mimicking characteristics of clinical septic cardiac dysfunction. In the second part, we determined the TLRS distribution in other mice major organs (lung, liver, gut and kidney) and we characterized in these organs the effects of flagellin on NF-κB and MAPK activation, on the expression of pro-inflammatory çytokines, and on the induction of apoptosis. We demonstrated that TLRS protein is constitutively expressed and that flagellin activates prototypical innate immune responses and pro-apoptotic pathways in all these organs. Finally, we also observed that flagellin induces a significant increase of multiple cytokines in the plasma from 1 to 6 hours after its intravenous administration. Altogether, these data provide evidence that bacterial flagellin (a) triggers an important inflammatory response and an acute dysfunction of the myocardium, and (b) significantly activates the mechanisms of innate immunity in most major organs and elicits a systemic inflammatory response. In consequence, flagellin may represent a potent mediator of inflammation and multiple organ failure, notably cardiac dysfunction, during Gram-negative septic shock.
Resumo:
Islet-Brain 1 (IB1) (also called JNK-interacting protein 1; JIP1) is a scaffold protein that tethers components of the JNK mitogen-activated protein kinase pathway inducing a modulation of the activity and the target specificity of the JNK kinases. Dysfunctions in IB1 have been associated with diseases such as early type II diabetes. To gain more insight in the functions of IB1, its ability to modulate the expression levels of the various JNK proteins was assessed. Each of the three JNK genes gives rise to several splice variants encoding short or long proteins. The expression levels of the short JNK proteins, but not of the long variants, were systematically higher in rat tissues and in transformed cell lines expressing high IB1 levels compared to tissues and cells with no or low IB1 expression. HEK293 cells bearing a tetracycline-inducible IB1 construct showed a specific increase of the short JNK endogenous splice variants in the presence of tetracycline. The augmented expression level of the short JNK splice variants induced by IB1 resulted from an increased stability towards degradation. Modulation of the stability of specific JNK splice variants represents therefore a newly identified mechanism used by IB1 to regulate the JNK MAPK pathway.
Resumo:
Islet-brain 1 (IB1), a regulator of the pancreatic beta-cell function in the rat, is homologous to JIP-1, a murine inhibitor of c-Jun amino-terminal kinase (JNK). Whether IB1 and JIP-1 are present in humans was not known. We report the sequence of the 2133-bp human IB1 cDNA, the expression, structure, and fine-mapping of the human IB1 gene, and the characterization of an IB1 pseudogene. Human IB1 is 94% identical to rat IB1. The tissue-specific expression of IB1 in human is similar to that observed in rodent. The IB1 gene contains 12 exons and maps to chromosome 11 (11p11.2-p12), a region that is deleted in DEFECT-11 syndrome. Apart from an IB1 pseudogene on chromosome 17 (17q21), no additional IB1-related gene was found in the human genome. Our data indicate that the sequence and expression pattern of IB1 are highly conserved between rodent and human and provide the necessary tools to investigate whether IB1 is involved in human diseases.
Resumo:
Résumé : L'insuline est produite et sécrétée par la cellule ß-pancréatique. Son rôle est de régler le taux de sucre dans le sang. Si ces cellules meurent ou échouent à produire suffisamment de l'insuline, les sujets développent le diabète de type 2 (DT2), une des maladies les plus communes dans les pays développés. L'excès chronique des lipoprotéines LDL oxydés (oxLDL) et/ou des cytokines pro-inflammatoires comme l'interleukine-1ß (IL-1ß) participent au dérèglement et à la mort des cellules ß. Nous avons montré qu'une chute des niveaux d'expression de la protéine nommée «mitogen activated protein kinase 8 interacting protein 1» ou «islet brain 1 (IB 1)» est en partie responsable des effets provoqués par les oxLDL ou IL-1ß. IB1 régule l'expression de l'insuline et la survie cellulaire en inhibant la voie de signalisation « c-jun N-terminal Kinase (JNK)». La réduction des niveaux d'expression d'IB1 provoque l'activation de la voie JNK en réponse aux facteurs environnementaux, et ainsi initie la réduction de l'expression de l'insuline et l'induction du programme de mort cellulaire. Les mimétiques de l'hormone "Glucagon-like peptide 1", tel que l'exendin-4 (ex-4), sont une nouvelle classe d'agents hypoglycémiants utilisés dans le traitement du DT2. Les effets bénéfiques de l'ex-4 sont en partie accomplis en préservant l'expression de l'insuline et la survie des cellules ß contre les stress associés au DT2. La restauration des niveaux d'expression d'IB1 est un des mécanismes par lequel l'ex-4 prodigue son effet sur la cellule. En effet, cette molécule stimule l'activité du promoteur du gène et ainsi compense la réduction du contenu en IB1 causée par le stress. Outre ce rôle anti-apoptotique, dans ce travail de thèse nous avons mis en évidence une autre fonction d'IB1 dans la cellule ß. La réduction de l'activité ou des niveaux d'expression d'IB1 induisent une réduction importante de la sécrétion de l'insuline en réponse au glucose. Le mécanisme par lequel IB1 régule la sécrétion de l'insuline implique à la fois le métabolisme du glucose et éventuellement le transport vésiculaire en contrôlant l'expression de la protéine annexin A2. En résumé, IB 1 est une molécule clé à travers laquelle l'environnement du diabétique pourrait exercer un effet délétère sur la cellule ß. L'amélioration de l'activité d'IB1 et/ou de son expression devrait être considérée dans les approches thérapeutiques futures visant à limiter la perte des cellules ß dans le diabète. Abstract : ß-cells of the pancreatic islets of Langerhans produce and secrete insulin when blood glucose rises. In turn, insulin ensures that plasma glucose concentrations return within a relatively narrow physiological range. If ß-cells die or fail to produce enough insulin, individuals develop one of the most common diseases in Western countries, namely type 2 diabetes (T2D). Chronic excess of oxidized low density lipoproteins (oxLDL) and/or pro-inflammatory cytokines such as interleukin 1-ß (IL-1ß) contribute to decline of ß-cells and thereby are thought to accelerate progression of the disease overtime. We showed that profound reduction in the levels of the mitogen activated protein kinase 8 interacting protein 1 also called islet brain 1 (IB1) causes ß-cell failure accomplished by oxLDL or IL-1 ß. IB1 regulates insulin expression and cell survivals by inhibiting the c-Jun N-terminal Kinase pathway. Diminution in IB 1 levels leads to an increase in activation of the JNK pathway induced by environmental stressors, and thus initiates loss of insulin expression and programmed cell death. The mimetic agents of the glucoincretin glucagon-like peptide 1 such as exendin-4 (ex-4) are new class of hypoglycaemic medicines for treatment of T2D. The beneficial property is in part achieved by preserving insulin expression and ß-cell survival against stressors related to diabetes. Restored levels in IB 1 account for the cytoprotective effect of the ex-4. In fact, the latter molecule .stimulates the promoter activity of the gene and thus compensates loss of IB1 content triggered by stress. Beside of the anti-apoptotic role, an additional leading function for IB 1 in ß-cells was highlighted in this thesis. Impairment in IB1 activity or silencing of the gene in ß-cells revealed a major reduction in insulin secretion elicited by glucose. The mechanisms whereby IB 1 couples glucose to insulin release involve glucose metabolism and potentially, vesicles trafficking by maintaining the levels of annexin A2. IB 1 is therefore a key molecule through which environmental factors related to diabetes may exert harmful effects on ß-cells. Improvement in IB 1 activity and/or expression should be considered as a target for therapeutic purpose.
Resumo:
AIMS/HYPOTHESIS: In insulin-secreting cells, activation of the c-Jun NH(2)-terminal kinase (JNK) pathway triggers apoptosis. Whereas JNK1 and JNK2 are ubiquitously produced, JNK3 has been described exclusively in neurons. This report aims to characterise the expression and role in apoptosis of the three JNK isoforms in insulin-secreting cells exposed to cytokines. METHODS: Sections of human and mouse pancreases were used for immunohistochemistry studies with isoform-specific anti-JNK antibodies. Human, pig, mouse and rat pancreatic islets were isolated by enzymatic digestion and RNA or protein extracts were prepared. RNA and protein levels were determined by quantitative RT-PCR and western blotting respectively, using JNK-isoform-specific primers and isoform-specific antibodies; activities of the three JNK isoforms were determined by kinase assays following quantitative immunoprecipitation/depletion of JNK3. JNK silencing was performed with small interfering RNAs and apoptotic rates were determined in INS-1E cells by scoring cells displaying pycnotic nuclei. RESULTS: JNK3 and JNK2 mRNAs are the predominant isoforms expressed in human pancreatic islets. JNK3 is nuclear while JNK2 is also cytoplasmic. In INS-1E cells, JNK3 knockdown increases c-Jun levels and caspase-3 cleavage and sensitises cells to cytokine-induced apoptosis; in contrast, JNK1 or JNK2 knockdown is protective. CONCLUSIONS/INTERPRETATION: In insulin-secreting cells, JNK3 plays an active role in preserving pancreatic beta cell mass from cytokine attacks. The specific localisation of JNK3 in the nucleus, its recruitment by cytokines, and its effects on key transcription factors such as c-Jun, indicate that JNK3 is certainly an important player in the transcriptional control of genes expressed in insulin-secreting cells.
Resumo:
SUMMARY:Cylindroma, trichoepithelioma and spiradenoma are benign tumors of hair follicle. They are caused by mutations and loss of heterozygosity in the CYLD gene. CYLD is a ubiquitously expressed, but the tumors are restricted to skin, suggesting that the tumorigenesis is influenced by skin-specific regulators and probably by mutations in other genes. The objectives of the thesis were to analyze the molecular mechanisms leading to the aforementioned tumors. In the first project, we have identified five new mutations in CYLD gene in tive families affected with different combinations of these skin appendage tumors. F our of these mutations caused the introduction of a premature stop codon in CYLD protein sequence, but one was a missense mutation changing aspartic acid 681 into glycine (D68lG), in patients exhibiting multiple trichoepitheliomas. CYLD is a deubiquitinase which can downregulate NF-κB and INK pathways through the deubiquitination of TRAF2, for example. We showed that the CYLD-D681G mutant was unable to remove polyubiquitin chains from TRAF2. We also proved that CYLD-D68lG could not inhibit TRAP 2- or TNFα- mediated NF-κB or INK activations in 293T cells. These results underlined the importance of the D68l residue for the enzymatic activity of CYLD. TRAP-interacting protein (TRIP), which is a E3-Ubiquitin ligase, is a partner of CYLD. In the second project of the thesis, we studied the function of TRIP in the epidermis. We found that TRIP was a nucleolar protein in cultured human primary keratinocytes (HEK) and HeLa cells, and was detected in the midbody of HeLa cells. Moreover, TRIP expression was shown to be downregulated through a PKC-dependent mechanism before induction of keratinocyte differentiation. We also proved that TRIP was upregulated in basal cell carcinomas. Furthermore, TRIP was found to be important for keratinocyte survival and proliferation through the regulation of the Gl/S transition. Our results suggest that TRIP may be involved in keratinocyte tumorigenesis.RÉSUMÉ :Les cylindromes, trichoépithéliomes et spiradénomes sont des tumeurs bénignes du follicule pileux causées par des mutations et une perte d'hétérozygotie du gène CYLD. CYLD est ubiquitaire mais les tumeurs sont limitées à la peau, suggérant que la tumorigénèse est influencée par des protéines spécifiques de la peau et par des mutations dans d'autres gènes. Les objectifs de la thèse étaient d'2malyser les mécanismes moléculaires aboutissant à la formation de ces tumeurs. Dans le premier projet, cinq nouvelles mutations du gène CYLD ont été identifiées chez cinq familles présentant différentes combinaisons des tumeurs citées ci- dessus. Quatre de ces mutations causaient I' introduction d'un codon stop prématuré dans la séquence protéique, mais une était une mutation «misser1se» changeant l'aspartate 681 en résidu glycine (D68lG) chez des patients présentant des trichoépithéliomes multiples. CYLD est une déubiquitinase qui inhibe les voies de signalisation de NF-κB et JNK, en déubiquitinant notamment TRAF2. Nous avons montré que la protéine mutante CYLD- D68lG ne pouvait pas cliver la chaîne de poly-ubiquitines liée à TRAF2. CYLD-D68lG était aussi incapable d'inhiber l'activation de NF-κB ou de JNK induite par TRAF2 ou TNF-o dans les cellules 293T. Ces résultats ont donc souligné l'impo1tance du résidu D68l pour l'activité de CYLD. «TRAF-interacting protein (TRIP)», qui est une «E3-ubiquitin-ligase», est un partenaire de CYLD. Dans le second proj et de la thèse, nous avons étudié la fonction de TRIP dans l'épidenne. Nous avons montrépque TRIP était nucléolaire dans les cellules HeLa et les kératinocytes primaires humains en culture et était détectée dans le «midbody» des cellules HeLa. Nous avons prouvé que l'ARNm de TRIP était diminué avant l'induction de la différentiation des kératinocytes, par un mécanisme dépendent de la protéine kinase C, tandis qu'il était augmenté dans les carcinomes baso-cellulaires. Nous avons aussi montré que TRIP influençait la prolifération et la survie des kératinocytes en régulant la transition G1/S, Nos résultats suggèrent que TRIP est peut-être impliquée dans la tumorigénèse des kératinocytes. 7
Resumo:
CONTEXT Adipose tissue hypoxia and endoplasmic reticulum (ER) stress may link the presence of chronic inflammation and macrophage infiltration in severely obese subjects. We previously reported the up-regulation of TNF-like weak inducer of apoptosis (TWEAK)/fibroblast growth factor-inducible 14 (Fn14) axis in adipose tissue of severely obese type 2 diabetic subjects. OBJECTIVES The objective of the study was to examine TWEAK and Fn14 adipose tissue expression in obesity, severe obesity, and type 2 diabetes in relation to hypoxia and ER stress. DESIGN In the obesity study, 19 lean, 28 overweight, and 15 obese nondiabetic subjects were studied. In the severe obesity study, 23 severely obese and 35 control subjects were studied. In the type 2 diabetes study, 11 type 2 diabetic and 36 control subjects were studied. The expression levels of the following genes were analyzed in paired samples of sc and visceral adipose tissue: Fn14, TWEAK, VISFATIN, HYOU1, FIAF, HIF-1a, VEGF, GLUT-1, GRP78, and XBP-1. The effect of hypoxia, inflammation, and ER stress on the expression of TWEAK and Fn14 was examined in human adipocyte and macrophage cell lines. RESULTS Up-regulation of TWEAK/Fn14 and hypoxia and ER stress surrogate gene expression was observed in sc and visceral adipose tissue only in our severely obese cohort. Hypoxia modulates TWEAK or Fn14 expression in neither adipocytes nor macrophages. On the contrary, inflammation up-regulated TWEAK in macrophages and Fn14 expression in adipocytes. Moreover, TWEAK had a proinflammatory effect in adipocytes mediated by the nuclear factor-kappaB and ERK but not JNK signaling pathways. CONCLUSIONS Our data suggest that TWEAK acts as a pro-inflammatory cytokine in the adipose tissue and that inflammation, but not hypoxia, may be behind its up-regulation in severe obesity.
Resumo:
Members of the tumor necrosis factor receptor (TNFR) superfamily have an important role in the induction of cellular signals resulting in cell growth, differentiation and death. TNFR-1 recruits and assembles a signaling complex containing a number of death domain (DD)-containing proteins, including the adaptor protein TRADD and the serine/threonine kinase RIP, which mediates TNF-induced NF-kappa B activation. RIP also recruits caspase-2 to the TNFR-1 signaling complex via the adaptor protein RAIDD, which contains a DD and a caspase-recruiting domain (CARD). Here, we have identified a RIP-like kinase, termed CARDIAK (for CARD-containing interleukin (IL)-1 beta converting enzyme (ICE) associated kinase), which contains a serine/threonine kinase domain and a carboxy-terminal CARD. Overexpression of CARDIAK induced the activation of both NF-kappa B and Jun N-terminal kinase (JNK). CARDIAK interacted with the TNFR-associated factors TRAF-1 and TRAF-2, and a dominant-negative form of TRAF-2 inhibited CARDIAK-induced NF-kappa B activation. Interestingly, CARDIAK specifically interacted with the CARD of caspase-1 (previously known as ICE), and this interaction correlated with the processing of pro-caspase-1 and the formation of the active p20 subunit of caspase-1. Together, these data suggest that CARDIAK may be involved in NF-kappa B/JNK signaling and in the generation of the proinflammatory cytokine IL-1 beta through activation of caspase-1.
Resumo:
RESUME Introduction : Dans le coeur adulte, l'ischémie et la reperfusion entraînent des perturbations électriques, mécaniques, biochimiques et structurales qui peuvent causer des dommages réversibles ou irréversibles selon la sévérité de l'ischémie. Malgré les récents progrès en cardiologie et en chirurgie foetales, la connaissance des mécanismes impliqués dans la réponse du myocarde embryonnaire à un stress hypoxique transitoire demeure lacunaire. Le but de ce travail a donc été de caractériser les effets chrono-, dromo- et inotropes de l'anoxie et de la réoxygénation sur un modèle de coeur embryonnaire isolé. D'autre part, les effets du monoxyde d'azote (NO) et de la modulation des canaux KATP mitochondriaux (mito KATP) sur la récupération fonctionnelle postanoxique ont été étudiés. La production myocardique de radicaux d'oxygène (ROS) et l'activité de MAP Kinases (ERK et JNK) impliquées dans la signalisation cellulaire ont également été déterminées. Méthodes : Des coeurs d'embryons de poulet âgés de 4 jours battant spontanément ont été placés dans une chambre de culture puis soumis à une anoxie de 30 min suivie d'une réoxygénation de 60 min. L'activité électrique (ECG), les contractions de l'oreillette, du ventricule et du conotroncus (détectées par photométrie), la production de ROS (mesure de la fluorescence du DCFH) et l'activité kinase de ERK et JNK dans le ventricule ont été déterminées au cours de l'anoxie et de la réoxygénation. Les coeurs ont été traités avec un bloqueur des NO synthases (L-NAME), un donneur de NO (DETA-NONOate), un activateur (diazoxide) ou un inhibiteur (5-HD) des canaux mitoKATP un inhibiteur non-spécifique des PKC (chélérythrine) ou un piégeur de ROS (MPG). Résultats : L'anoxie et la réoxygénation entraînaient des arythmies (essentiellement d'origine auriculaire) semblables à celles observées chez l'adulte, des troubles de la conduction (blocs auriculo-ventriculaires de 1er, 2ème et 3ème degré) et un ralentissement marqué du couplage excitation-contraction (E-C) ventriculaire. En plus de ces arythmies, la réoxygénation déclenchait le phénomène de Wenckelbach, de rares échappements ventriculaires et une sidération myocardique. Aucune fibrillation, conduction rétrograde ou activité ectopique n'ont été observées. Le NO exogène améliorait la récupération postanoxique du couplage E-C ventriculaire alors que L'inhibition des NOS la ralentissait. L'activation des canaux mito KATP augmentait la production mitochondriale de ROS à la réoxygénation et accélérait la récupération de la conduction (intervalle PR) et du couplage E-C ventriculaire. La protection de ce couplage était abolie par le MPG, la chélérythrine ou le L-NAME. Les fonctions électrique et contractile de tous les coeurs récupéraient après 30-40 min de réoxygénation. L'activité de ERK et de JNK n'était pas modifiée par L'anoxie, mais doublait et quadruplait, respectivement, après 30 min de réoxygénation. Seule l'activité de JNK était diminuée (-60%) par l'activation des canaux mitoKATP. Cet effet inhibiteur était partiellement abolit par le 5-HD. Conclusion: Dans le coeur immature, le couplage E-C ventriculaire semble être un paramètre particulièrement sensible aux conditions d'oxygénation. Sa récupération postanoxique est améliorée par l'ouverture des canaux mitoKATP via une signalisation impliquant les ROS Ies PKC et le NO. Une réduction de l'activité de JNK semble également participer à cette protection. Nos résultats suggèrent que les mitochondries jouent un rôle central dans la modulation des voies de signalisation cellulaire, en particulier lorsque les conditions métaboliques deviennent défavorables. Le coeur embryonnaire isolé représente donc un modèle expérimental utile pour mieux comprendre les mécanismes associés à une hypoxie in utero et pour améliorer les stratégies thérapeutiques en cardiologie et chirurgie foetales. ABSTRACT Physiopathology of the anoxic-reoxygenated embryonic heart: Protective role of NO and KATP channel Aim: In the adult heart, the electrical, mechanical, biochemical and structural disturbances induced by ischemia and reperfusion lead to reversible or irreversible damages depending on the severity and duration of ischemia. In spite of recent advances in fetal cardiology and surgery, little is known regarding the cellular mechanisms involved in hypoxia-induced dysfunction in the developing heart. The aim of this study was to precisely characterize the chrono-, dromo- and inotropic disturbances associated with anoxia-reoxygenation in an embryonic heart model. Furthermore, the roles that nitric oxide (NO), reactive oxygen species (ROS), mitochondrial KATP, (mito KATP) channel and MAP Kinases could play in the stressed developing heart have been investigated. Methods: Embryonic chick hearts (4-day-old) were isolated and submitted in vitro to 30 min anoxia followed by 60 min reoxygenation. Electrical (ECG) and contractile activities of atria, ventricle and conotruncus (photometric detection), ROS production (DCFH fluorescence) and ERK and JNK activity were determined in the ventricle throughout anoxia-reoxygenation. Hearts were treated with NO synthase inhibitor (L-NAME), NO donor (DETA-NONOate), mitoKATP channel opener (diazoxide) or blocket (5-HD), PKC inhibitor (chelerythrine) and ROS scavenger (MPG). Results: Anoxia and reoxygenation provoked arrhythxnias (mainly originating from atrial region), troubles of conduction (st, 2nd, and 3rd degree atrio-ventricular blocks) and disturbances of excitation-contraction (E-C) coupling. In addition to these types of arrhythmias, reoxygenation triggered Wenckebach phenomenon and rare ventricular escape beats. No fibrillations, no ventricular ectopic beats and no electromechanical dissociation were observed. Myocardial stunning was observed during the first 30 min of reoxygenation. All hearts fully recovered their electrical and mechanical functions after 30-40 min of reoxygenation. Exogenous NO improved while NOS inhibition delayed E-C coupling recovery. Mito KATP, channel opening increased reoxygenation-induced ROS production and improved E-C coupling and conduction (PR) recovery. MPG, chelerythrine or L-NAME reversed this effect. Reoxygenation increased ERK and JNK activities land 4-fold, respectively, while anoxia had no effect. MitoKATP channel opening abolished the reoxygenation-induced activation of JNK but had no effect on ERK activity. This inhibitory effect was partly reversed by mitoKATP channel blocker but not by MPG. Conclusion: In the developing heart, ventricular E-C coupling was found to be specially sensitive to hypoxia-reoxygenation and its postanoxic recovery was improved by mitoKATP channel activation via a ROS-, PKC- and NO-dependent pathway. JNK inhibition appears to be involved in this protection. Thus, mitochondria can play a pivotal role in the cellular signalling pathways, notably under critical metabolic conditions. The model of isolated embryonic heart appears to be useful to better understand the mechanisms underlying the myocardial dysfunction induced by an in utero hypoxia and to improve therapeutic strategies in fetal cardiology and surgery.
Resumo:
We have previously reported on the death effector domain containing E8 gene product from equine herpesvirus-2, designated FLICE inhibitory protein (v-FLIP), and on its cellular homologue, c-FLIP, which inhibit the activation of caspase-8 by death receptors. Here we report on the structure and function of the E10 gene product of equine herpesvirus-2, designated v-CARMEN, and on its cellular homologue, c-CARMEN, which contain a caspase-recruiting domain (CARD) motif. c-CARMEN is highly homologous to the viral protein in its N-terminal CARD motif but differs in its C-terminal extension. v-CARMEN and c-CARMEN interact directly in a CARD-dependent manner yet reveal different binding specificities toward members of the tumor necrosis factor receptor-associated factor (TRAF) family. v-CARMEN binds to TRAF6 and weakly to TRAF3 and, upon overexpression, potently induces the c-Jun N-terminal kinase (JNK), p38, and nuclear factor (NF)-kappaB transcriptional pathways. c-CARMEN or truncated versions thereof do not appear to induce JNK and NF-kappaB activation by themselves, nor do they affect the JNK and NF-kappaB activating potential of v-CARMEN. Thus, in contrast to the cellular homologue, v-CARMEN may have additional properties in its unique C terminus that allow for an autonomous activator effect on NF-kappaB and JNK. Through activation of NF-kappaB, v-CARMEN may regulate the expression of the cellular and viral genes important for viral replication.