848 resultados para Ion-pairs
Resumo:
Self-assembled materials consisting of V(2)O(5), polyallylamine (PAR) and silver nanoparticles (AgNPs) were obtained by the layer-by-layer (LbL) method, aiming at their application as electrodes for lithium-ion batteries and electrochromic devices. The method employed herein allowed for linear growth of visually homogeneous films composed of V(2)O(5), V(2)O(5)/PAH, and V(2)O(5)/PAH/AgNP with 15 bilayers. According to the Fourier transform infrared spectra, interaction between the oxygen atom of the vanadyl group and the amino group should be responsible for the growth of these films. This interaction also enabled establishment of an electrostatic shield between the lithium ions and the sites with higher negative charge, thereby raising the ionic mobility and consequently increasing the energy storage capacity and reducing the response time. According to the site-saturation model and the electrochemical and spectroelectrochemical results, the presence of PAH in the self-assembled host matrix decreased the number of V(2)O(5) electroactive sites. Thus, AgNPs were stabilized in PAR and inserted into the nanoarchitecture, so as to enhance the specific capacity. This should provide new conducting pathways and connect isolated V(2)O(5) particles in the host matrix. Therefore, new nanoarchitectures for specific interactions were formed spontaneously and chosen as examples in this work, aiming to demonstrate the potentiality of the adopted self-assembled method for enhancing the charge transport rate into the host matrices. The obtained materials displayed suitable properties for use as electrodes in lithium batteries and electrochromic devices.
Resumo:
To better comprehend the structural and biochemical underpinnings of ion uptake across the gills of true freshwater crabs, we performed an ultrastructural, ultracytochemical and morphometric investigation, and kinetically characterized the Na(+), K(+)-ATPase, in posterior gill lamellae of Dilocarcinus pagei. Ultrastructurally, the lamellar epithelia are markedly asymmetrical: the thick, mushroom-shaped, proximal ionocytes contain elongate mitochondria (41% cell volume) associated with numerous (approximate to 14 mu m(2) membrane per mu m(3) cytoplasm), deep invaginations that house the Na(+), K(+)-ATPase, revealed ultracytochemically. Their apical surface is amplified (7.5 mu m(2) mu m(-2)) by stubby evaginations whose bases adjoin mitochondria below the subcuticular space. The apical membrane of the thin, distal ionocytes shows few evaginations (1.6 mu m(2) mu m(-2)), each surrounding a mitochondrion, abundant in the cytoplasm below the subcuticular space; basolateral invaginations and mitochondria are few. Fine basal cytoplasmic bridges project across the hemolymph space, penetrating into the thick ionocytes, suggesting ion movement between the epithelia. Microsomal Na(+), K(+)-ATPase specific activity resembles marine crabs but is approximate to 5-fold less than in species from fluctuating salinities, and freshwater shrimps, suggesting ion loss compensation by strategies other than Na(+) uptake. Enzyme apparent K(+) affinity attains 14-fold that of marine crabs, emphasizing the relevance of elevated K(+) affinity to the conquest of fresh water. Western blotting and biphasic ouabain inhibition disclose two alpha-subunit isoforms comprising distinct functional isoenzymes. While enzyme activity is not synergistically stimulated by NH(4)(+) and K(+), each increases affinity for the other, possibly assuring appropriate intracellular K(+) concentrations. These findings reveal specific structural and biochemical adaptations that may have allowed the establishment of the Brachyura in fresh water. J. Exp. Zool. 313A:508-523, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
In recent years our understanding of the control of ion and urea metabolism in elasmobranch fish has increased with many more species being investigated. This has demonstrated that many species regarded as stenohaline marine are at least, partially euryhaline and may survive in environments less concentrated than full seawater. This presentation will review these recent findings and then compare the osmoregulatory strategies of a partially euryhaline species, Scyliorhinus canicula, with a fully euryhaline migratory species Carcharinus leucas. This will include new data for both species and will generate new models for the control of ion and urea metabolism in elasmobranchs on which to base future research.
Resumo:
Background: Retinitis pigmentosa (RP) is a group of genetically heterogeneous diseases with progressive degeneration of the retina. The condition can be inherited as an autosomal dominant, autosomal recessive, and X-linked trait. Methods: We report on two female twin pairs. One twin of each pair is affected with RP, the other twin is unaffected, both clinically and functionally. Molecular analysis in both twins included zygosity determination, arrayed primer extension chip analysis for autosomal recessive and dominant RP, sequencing of the entire RPGR gene, and analysis of X-chromosome inactivation status. Results: Both unrelated twin pairs were genetically identical. Of the potential pathogenetic mechanisms, skewed X-inactivation was excluded on leukocytes. Autosomal recessive RP and autosomal dominant RP arrayed primer extension chip analysis result was completely normal, excluding known mutations in known genes as the cause of disease in the affected twins. Sequencing excluded mutations in RPGR. A postzygotic recessive or dominant genetic mutation of an RP gene is not impossible. A postfertilization error as a potential cause of uniparental isodisomy is unlikely albeit not entirely impossible. Conclusion: The authors report on the second and third unrelated identical twin pair discordant for RP. The exact cause of the condition and the explanation of the clinical discordance remain elusive. RETINA 31:1164-1169, 2011
Resumo:
Search path, searching behaviour and diet of pairs of Oystercatchers feeding in mudflat territories were studied during spring. females ate Nereis, Mya, small unidentified prey, probably Corophium, and a few Macoma, whereas males primarily ate Macoma. Even when female and male foraged in the same site, they often caught different prey. The combination of 'The Search-rate/Detection Model' (Gendron & Staddon 1983) and 'The Harvestable Prey Model' (Zwarts & Wanink 1993) provide the theoretical framework in which to explain these differences in diet. Macoma are thought to be more cryptic than Nereis, Mya and Corophium. Therefore females, while searching at a faster rate than their respective mates, caught far fewer cryptic prey, but a greater number of more conspicuous prey than their mates. On the basis of distances moved before and after capturing prey, males exhibited area-restricted searching for Macoma and Corophium. In contrast, females did not exhibit any area-restricted searching. it is suggested that the distribution of Macoma and Corophium available to males searching slowly was more clumped than that of these two prey species available to females searching more quickly.
Resumo:
The synthesis, spectroscopy, and electrochemistry of the acyclic tertiary tetraamine copper(II) complex [CuL(1)](ClO4)(2) (L(1) = N,N-bis(2'-(dimethylamino)ethyl)-N,N'-dimethylpropane-1,3-diamine) is reported. The X-ray crystal structure of [CuL(1)(OClO3)(2)] reveals a tetragonally elongated CuN4O2 coordination sphere, exhibiting relatively long Cu-N bond lengths for a Cu-II tetraamine, and a small tetrahedral distortion of the CuN4 plane. The [CuL(1)](2+) ion displays a single, reversible, one-electron reduction at -0.06 V vs Ag/AgCl. The results presented herein illustrate the inherent difficulties associated with the separation and characterization of Cu-II complexes of tertiary tetraamines, and some previously incorrect assertions and unexplained observations of other workers are discussed.
Resumo:
The gene encoding the large conductance mechanosensitive ion channel (MscL) of Escherichia coli and several deletion mutants of mscL were cloned under the control of the T7 RNA polymerase promoter. Transformation of these constructs into an E. coli strain carrying an inducible T7 RNA polymerase gene allowed the specific production and labelling of MscL with [S-35]methionine. Preparation of membrane fractions of E. coli cells by sucrose gradient centrifugation indicated that the radiolabelled MscL was present in the inner cytoplasmic membrane in agreement with results of several studies. However, treatment of the labelled cells and cell membrane vesicles with various cross-linkers resulted in the majority of labelled protein migrating as a monomer with a small proportion of molecules (approximate to 25%) migrating as dimers and higher order multimers. This result is in contrast with a finding of a study suggesting that the channel exclusively forms hexamers in the cell membrane off. coli (1) and therefore may have profound implication for the activation and/or ''multimerization'' of the channel by mechanical stress exerted to the membrane. In addition, from the specific activity of the radiolabelled protein and the amount of protein in the cytoplasmic membrane fraction we estimated the number of MscL ion channels expressed under these conditions to be approximately 50 channels per single bacterium. (C) 1997 Academic Press.
Resumo:
The spatial and temporal evolution of a depleted atomic distribution created by laser enhanced ionisation (LEI) was employed to determine both a diffusion coefficient for sodium (Na) and an electron (e(-)) and sodium ion recombination rate coefficient in an analytical air-C2H2 flame. A depleted distribution of neutral sodium atoms was produced in a flame by ionising approximately 80% of the irradiated sodium atoms in a well defined region using a two step LEI excitation scheme. Following depletion by ionisation, planar laser induced fluorescence (PLIF) images of the depleted region recorded the diffusion and decay of the depleted Na distribution for different depletion-probe delays. From measurements of the diffused width of the distribution, an accurate diffusion coefficient D = (1.19 +/- 0.03) x 10(-3) m(2) s(-1) for Na was determined in teh burnt gases of the flame. Measurements of the integrated fluorescence intensity in the depleted region for different depletion-probe delays were related to an increase in atomic sodium concentration caused by electron-ion recombination. At high concentrations (greater than or equal to 50 mu g ml(-1)), where the electron and ion concentrations in the depleted region were assumed equal, a recombination rate coefficient of 4.2 x 10(-9) cm(3) s(-1) was calculated. (C) 1997 Elsevier Science B.V.
Resumo:
The dependence of currents through the cyclic nucleotide-gated (CNG) channels of mammalian olfactory receptor neurons (ORNs) on the concentration of NaCl was studied in excised inside-out patches from their dendritic knobs using the patch-clamp technique. With a saturating concentration (100 mu M) of adenosine 3', 5'-cyclic monophosphate (cAMP), the changes in the reversal potential of macroscopic currents were studied at NaCl concentrations from 25 to 300 mM. In symmetrical NaCl solutions without the addition of divalent cations, the current-voltage relations were almost linear, reversing close to O mV. When the external NaCl concentration was maintained at 150 mM and the internal concentrations were varied, the reversal potentials of the cAMP-activated currents closely followed the Na+ equilibrium potential indicating that P-Cl/P-Na approximate to 0. However, at low external NaCl concentrations (less than or equal to 100 mM) there was some significant chloride permeability. Our results further indicated that Na+ currents through these channels: (i) did not obey the independence principle; (ii) showed saturation kinetics with K(m)s in the range of 100-150 mM and (iii) displayed a lack of voltage dependence of conductance in asymmetric solutions that suggested that ion-binding sites were situated midway along the channel. Together, these characteristics indicate that the permeation properties of the olfactory CNG channels are significantly different from those of photoreceptor CNG channels.
Resumo:
The reaction of the bis(1,2-diamine) copper(II) complexes of racemic propane-1,2-diamine (pn) and 2-methylpropane-1,2-diamine (dmen) with formaldehyde and nitroethane in methanol under basic conditions yields minor macrocyclic condensation products in addition to the major acyclic products. Where C-pendant methyl groups on the pair of coordinated diamines are in cis dispositions, the first -NH-CH2-C(CH3)(NO2)-CH2-NH- ring formation occurs at amine pairs distant from these C-methyl substituents, and further reaction to yield a macrocycle is not observed. However, where the C-methyl substituents are in trans dispositions, the chemistry proceeds to yield the macrocycle. Commencing with pn, trans-(6,13-diammonio-2,6,9,13-tetramethyl-1,4,7,10-tetraazacyclotetradecane)copper(II) perchlorate formed and crystallized in the space group P2(1)/n, with a 9.782(2), b 9.2794(6), c 17.017(4) Angstrom, beta 103.24(1)degrees. The copper ion is found in a square-planar environment, with the two methyl groups of the pn residues and the pairs of introduced pendant groups all in trans arrangements.
Resumo:
The open channel diameter of Escherichia coli recombinant large-conductance mechanosensitive ion channels (MscL) was estimated using the model of Hille (Hille, B. 1968. Pharmacological modifications of the sodium channels of frog nerve. J. Gen. Physiol. 51:199-219)that relates the pore size to conductance. Based on the MscL conductance of 3.8 nS, and assumed pore lengths, a channel diameter of 34 to 46 Angstrom was calculated. To estimate the pore size experimentally, the effect of large organic ions on the conductance of MscL was examined. Poly-L-lysines (PLLs) with a diameter of 37 Angstrom or larger significantly reduced channel conductance, whereas spermine (similar to 15 Angstrom), PLL19 (similar to 25 Angstrom) and 1,1'-bis-(3-(1'-methyl-(4,4'-bipyridinium)-1-yl)-propyl)-4,4'-bipyridinium (similar to 30 Angstrom) had no effect. The smaller organic ions putrescine, cadaverine, spermine, and succinate all permeated the channel. We conclude that the open pore diameter of the MscL is similar to 40 Angstrom, indicating that the MscL has one of the largest channel pores yet described. This channel diameter is consistent with the proposed homohexameric model of the MscL.
Resumo:
We show how a nonlinear chaotic system, the parametrically kicked nonlinear oscillator, may be realized in the dynamics of a trapped, laser-cooled ion, interacting with a sequence of standing-wave pulses. Unlike the original optical scheme [G. J. Milburn and C.A. Holmes, Phys. Rev. A 44, 4704 (1991)], the trapped ion enables strongly quantum dynamics with minimal dissipation. This should permit an experimental test of one of the quantum signatures of chaos: irregular collapse and revival dynamics of the average vibrational energy.
Resumo:
Purpose: Inorganic apparent strong ion difference (SIDai) improves chloride-associated acidosis recognition in dysnatremic patients. We investigated whether the difference between sodium and chloride (Na+-C1-) or the ratio between chloride and sodium (Cl-/Na+) could be used as SIDai surrogates in mixed and dysnatremic patients. Patients and Methods: Two arterial blood samples were collected from 128 patients. Physicochemical analytical approach was used. Correlation, agreement, accuracy, sensitivity, and specificity were measured to examine whether Na(+)-C1(-) and CI(-)/Na(+) could be used instead of SIDai in the diagnosis of acidosis. Results: Na(+)-C1(-) and CF/Na+ were well correlated with SIDai (R = 0.987, P < 0.001 and R = 0.959, P < 0.001, respectively). Bias between Na(+)-C1(-) and SIDai was high (6.384 with a limit of agreement of 4.4638.305 mEq/L). Accuracy values for the identification of SIDai acidosis (<38.9 mEq/L) were 0.989 (95% confidence interval [CI], 0.980-0.998) for Na+-C1- and 0.974 (95% CI, 0.959-0.989) for Cr/Na+. Receiver operator characteristic curve showed that values revealing SIDai acidosis were less than 32.5 mEq/L for Nata- and more than 0.764 for C17Na+ with sensitivities of 94.0% and 92.0% and specificities of 97.0% and 90.0%, respectively. Nata- was a reliable S IDai surrogate in dysnatremic patients. Conclusions: Nata- and CI-/Na+ are good tools to disclose S IDai acidosis. In patients with dysnatremia, Nata- is an accurate tool to diagnose SIDai acidosis. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
BACKGROUND AND PURPOSE The P2X receptor family consists of seven subunit types - P2X1-P2X7. All but P2X6 are able to assemble as homotrimers. In addition, various subunit permutations have been reported to form heterotrimers. Evidence for heterotrimer formation includes co-localization, co-immunoprecipitation and the generation of receptors with novel functional properties; however, direct structural evidence for heteromer formation, such as chemical cross-linking and single-molecule imaging, is available in only a few cases. Here we examined the nature of the interaction between two pairs of subunits - P2X2 and P2X4, and P2X4 and P2X7. EXPERIMENTAL APPROACH We used several experimental approaches, including in situ proximity ligation, co-immunoprecipitation, co-isolation on affinity beads, chemical cross-linking and atomic force microscopy (AFM) imaging. KEY RESULTS Both pairs of subunits co-localize upon co-transfection, interact intimately within cells, and can be co-immunoprecipitated and co-isolated from cell extracts. Despite this, chemical cross-linking failed to show evidence for heteromer formation. AFM imaging of isolated receptors showed that all three subunits had the propensity to form receptor dimers. This self-association is likely to account for the observed close interaction between the subunit pairs, in the absence of true heteromer formation. CONCLUSIONS AND IMPLICATIONS We conclude that both pairs of receptors interact in the form of distinct homomers. We urge caution in the interpretation of biochemical evidence indicating heteromer formation in other cases.