816 resultados para Investigative tasks
Resumo:
This paper describes a structured SVM framework suitable for noise-robust medium/large vocabulary speech recognition. Several theoretical and practical extensions to previous work on small vocabulary tasks are detailed. The joint feature space based on word models is extended to allow context-dependent triphone models to be used. By interpreting the structured SVM as a large margin log-linear model, illustrates that there is an implicit assumption that the prior of the discriminative parameter is a zero mean Gaussian. However, depending on the definition of likelihood feature space, a non-zero prior may be more appropriate. A general Gaussian prior is incorporated into the large margin training criterion in a form that allows the cutting plan algorithm to be directly applied. To further speed up the training process, 1-slack algorithm, caching competing hypothesis and parallelization strategies are also proposed. The performance of structured SVMs is evaluated on noise corrupted medium vocabulary speech recognition task: AURORA 4. © 2011 IEEE.
Resumo:
Chapter 6 A Population Perspective on Mobile Phone Related Tasks M. Bradley, S. Waller, J. Goodman-Deane, l. Hosking, R. Tenneti, PM Langdon and PJ Clarkson 6.1 Introduction For design to be truly inclusive, it needs to take into ...
Resumo:
Measuring capability variations within the population isanimportant process that can be used to support decision making regarding the inclusivity of design for all users, thus allowing the level of exclusion tobe defined veryearly and throughout the design process. Our hands often represent a central feature of the human-task interaction, and therefore, variations in the capabilities of the hands has the potential to exclude people from all or part of the tasks they perform. Data is presented from the performance of 15 people in one of three age groups (18-40, 41-64 and 65+). Using a classification system for defining hand actions the prevalence of different grips in response to a range of physical task demands was mapped in a way that allowed capability to be measured against other variables such as task quality. This was found toenhance thegranularity with which exclusion could be both measured and predicted.
Resumo:
To consider the energy-aware scheduling problem in computer-controlled systems is necessary to improve the control performance, to use the limited computing resource sufficiently, and to reduce the energy consumption to extend the lifetime of the whole system. In this paper, the scheduling problem of multiple control tasks is discussed based on an adjustable voltage processor. A feedback fuzzy-DVS (dynamic voltage scaling) scheduling architecture is presented by applying technologies of the feedback control and the fuzzy DVS. The simulation results show that, by using the actual utilization as the feedback information to adjust the supply voltage of processor dynamically, the high CPU utilization can be implemented under the precondition of guaranteeing the control performance, whilst the low energy consumption can be achieved as well. The proposed method can be applied to the design in computer-controlled systems based on an adjustable voltage processor.
Resumo:
The utility of vision-based face tracking for dual pointing tasks is evaluated. We first describe a 3-D face tracking technique based on real-time parametric motion-stereo, which is non-invasive, robust, and self-initialized. The tracker provides a real-time estimate of a ?frontal face ray? whose intersection with the display surface plane is used as a second stream of input for scrolling or pointing, in paral-lel with hand input. We evaluated the performance of com-bined head/hand input on a box selection and coloring task: users selected boxes with one pointer and colors with a second pointer, or performed both tasks with a single pointer. We found that performance with head and one hand was intermediate between single hand performance and dual hand performance. Our results are consistent with previously reported dual hand conflict in symmetric pointing tasks, and suggest that a head-based input stream should be used for asymmetric control.
Resumo:
This paper describes BUILD, a computer program which generates plans for building specified structures out of simple objects such as toy blocks. A powerful heuristic control structure enables BUILD to use a number of sophisticated construction techniques in its plans. Among these are the incorporation of pre-existing structure into the final design, pre-assembly of movable sub-structures on the table, and use of the extra blocks as temporary supports and counterweights in the course of construction. BUILD does its planning in a modeled 3-space in which blocks of various shapes and sizes can be represented in any orientation and location. The modeling system can maintain several world models at once, and contains modules for displaying states, testing them for inter-object contact and collision, and for checking the stability of complex structures involving frictional forces. Various alternative approaches are discussed, and suggestions are included for the extension of BUILD-like systems to other domains. Also discussed are the merits of BUILD's implementation language, CONNIVER, for this type of problem solving.
Resumo:
C.H. Orgill, N.W. Hardy, M.H. Lee, and K.A.I. Sharpe. An application of a multiple agent system for flexible assemble tasks. In Knowledge based envirnments for industrial applications including cooperating expert systems in control. IEE London, 1989.
Resumo:
http://www.archive.org/details/ancientpeoplesat00pricuoft
Resumo:
This thesis elaborates on the problem of preprocessing a large graph so that single-pair shortest-path queries can be answered quickly at runtime. Computing shortest paths is a well studied problem, but exact algorithms do not scale well to real-world huge graphs in applications that require very short response time. The focus is on approximate methods for distance estimation, in particular in landmarks-based distance indexing. This approach involves choosing some nodes as landmarks and computing (offline), for each node in the graph its embedding, i.e., the vector of its distances from all the landmarks. At runtime, when the distance between a pair of nodes is queried, it can be quickly estimated by combining the embeddings of the two nodes. Choosing optimal landmarks is shown to be hard and thus heuristic solutions are employed. Given a budget of memory for the index, which translates directly into a budget of landmarks, different landmark selection strategies can yield dramatically different results in terms of accuracy. A number of simple methods that scale well to large graphs are therefore developed and experimentally compared. The simplest methods choose central nodes of the graph, while the more elaborate ones select central nodes that are also far away from one another. The efficiency of the techniques presented in this thesis is tested experimentally using five different real world graphs with millions of edges; for a given accuracy, they require as much as 250 times less space than the current approach which considers selecting landmarks at random. Finally, they are applied in two important problems arising naturally in large-scale graphs, namely social search and community detection.
Resumo:
The 2-channel Ellias-Grossberg neural pattern generator of Cohen, Grossberg, and Pribe [1] is shown to simulate data from human bimanual coordination tasks in which anti-phase oscillations at low frequencies spontaneously switch to in-phase oscillations at high frequencies, in-phase oscillations can be performed at both low and high frequencies, phase fluctuations occur at the anti-phase to in-phase transition, and a "seagull effect" of larger errors occurs at intermediate phases.