970 resultados para Invasive Alien Plants


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project is led by scientists in conservation decision appraisal and brings together a group of experts working across the Lake Eyre Basin (LEB). The LEB covers a sixth of Australia, with an array of globally significant natural values that are threatened by invasive plants, among other things. Managers at various levels are investing in attempts to control, contain and eradicate these invasive plant species, under severe time and resources limitations. To date there has been no basin-wide assessment of which weed management strategies and locations provide the best investments for maximising outcomes for biodiversity per unit cost. Further, there has been no assessment of the extent of ecosystem intactness that may be lost without effective invasive plant species management strategies. Given that there are insufficient resources to manage all invasive plant species everywhere, this information has the potential to improve current investment decisions. Here, we provide a prioritisation of invasive plant management strategies in the LEB. Prioritisation was based on cost-effectiveness for biodiversity benefits. We identify the key invasive plant species to target to protect ecosystem intactness across the bioregions of the LEB, the level of investment required and the likely reduction in invasive species dominance gained per dollar spent on each strategy. Our focus is on strategies that are technically and socially feasible and reduce the likelihood that high impact invasive plant species will dominate native ecosystems, and therefore change their form and function. The outputs of this work are designed to help guide decision-making and further planning and investment in weed management for the Basin. Experts in weed management, policy-making, community engagement, biodiversity and natural values of the Basin, attended a workshop and agreed upon 12 strategies to manage invasive plants. The strategies focused primarily on 10 weeds which were considered to have a high potential for broad, significant impacts on natural ecosystems in the next 50 years and for which feasible management strategies could be defined. Each strategy consisted of one or more supporting actions, many of which were spatially linked to IBRA (Interim Biogeographical Regionalisation of Australia) bioregions. The first strategy was an over-arching recommendation for improved mapping, information sharing, education and extension efforts in order to facilitate the more specific weed management strategies. The 10 more specific weed management strategies targeted the control and/or eradication of the following high-impact exotic plants: mesquite, parkinsonia, rubber vine, bellyache bush, cacti, mother of millions, chinee apple, athel pine and prickly acacia, as well as a separate strategy for eradicating all invasive plants from one key threatened ecological community, the GAB (Great Artesian Basin dependant) mound springs. Experts estimated the expected biodiversity benefit of each strategy as the reduction in area that an invasive plant species is likely to dominate in over a 50-year period, where dominance was defined as more than 30% coverage at a site. Costs were estimated in present day terms over 50 years largely during follow up discussions post workshop. Cost-effectiveness was then calculated for each strategy in each bioregion by dividing the average expected benefit by the average annual costs. Overall, the total cost of managing 12 invasive plant strategies over the next 50 years was estimated at $1.7 billion. It was estimated that implementation of these strategies would result in a reduction of invasive plant dominance by 17 million ha (a potential 32% reduction), roughly 14% of the LEB. If only targeting Weeds of National Significance (WONS), the total cost was estimated to be $113 million over the next 50 years. Over the next 50 years, $2.3 million was estimated to eradicate all invasive plant species from the Great Artesian Basin Mound Springs threatened ecological community. Prevention and awareness programs were another key strategy targeted across the Basin and estimated at $17.5 million in total over 50 years. The cost of controlling, eradicating and containing buffel grass were the most expensive, over $1.5 billion over 50 years; this strategy was estimated to result in a reduction in buffel grass dominance of a million ha in areas where this species is identified as an environmental problem. Buffel grass has been deliberately planted across the Basin for pasture production and is by far the most widely distributed exotic species. Its management is contentious, having economic value to many graziers while posing serious threats to biodiversity and sites of high cultural and conservation interest. The strategy for containing and locally eradicating buffel grass was a challenge to cost based on expert knowledge, possibly because of the dual nature of this species as a valued pastoral grass and environmental weed. Based on our conversations with experts, it appears that control and eradication programs for this species, in conservation areas, are growing rapidly and that information on the most cost-effective strategies for this species will continue to develop over time. The top five most cost-effective strategies for the entire LEB were for the management of: 1) parkinsonia, 2) chinee apple, 3) mesquite, 4) rubber vine and 5) bellyache bush. Chinee apple and mother of millions are not WONS and have comparatively small populations within the semi-arid bioregions of Queensland. Experts felt that there was an opportunity to eradicate these species before they had the chance to develop into high-impact species within the LEB. Prickly acacia was estimated to have one of the highest benefits, but the costs of this strategy were high, therefore it was ranked 7th overall. The buffel grass strategy was ranked the lowest (10th) in terms of cost effectiveness. The top five most cost-effective strategies within and across the bioregions were the management of: 1) parkinsonia in the Channel Country, 2) parkinsonia in the Desert Uplands, 3) mesquite in the Mitchell Grass Downs, 4) parkinsonia in the Mitchell Grass Downs, and 5) mother of millions in the Desert Uplands. Although actions for several invasive plant species like parkinsonia and prickly acacia were concentrated in the Queensland part of the LEB, the actions involved investing in containment zones to prevent the spread of these species into other states. In the NT and SA bioregions of the LEB, the management of athel pine, parkinsonia and cacti were the main strategies. While outside the scientific research goals of study, this work highlighted a number of important incidental findings that led us to make the following recommendations for future research and implementation of weed management in the Basin: • Ongoing stakeholder engagement, extension and participation is required to ensure this prioritisation effort has a positive impact in affecting on-ground decision making and planning. • Short term funding for weed management was identified as a major reason for failure of current efforts, hence future funding needs to be secure and ongoing. • Improved mapping and information sharing is essential to implement effective weed management. • Due to uncertainties in the outcomes and impacts of management options, strategies should be implemented as part of an adaptive management program. The information provided in this report can be used to guide investment for controlling high-impact invasive plant species for the benefits of biodiversity conservation. We do not present a final prioritisation of invasive plant strategies for the LEB, and we have not addressed the cultural, socio-economic or spatial components necessary for an implementation plan. Cost-effectiveness depends on the objectives used; in our case we used the intactness of ecosystems as a surrogate for expected biodiversity benefits, measured by the extent that each invasive plant species is likely to dominate in a bioregion. When other relevant factors for implementation are considered the priorities may change and some actions may not be appropriate in some locations. We present the costs, ecological benefits and cost-effectiveness of preventing, containing, reducing and eradicating the dominance of high impact invasive plants through realistic management actions over the next 50 years. In doing so, we are able to estimate the size of the weed management problem in the LEB and provide expert-based estimates of the likely outcomes and benefits of implementing weed management strategies. The priorities resulting from this work provide a prospectus for guiding further investment in management and in improving information availability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The notion of being sure that you have completely eradicated an invasive species is fanciful because of imperfect detection and persistent seed banks. Eradication is commonly declared either on an ad hoc basis, on notions of seed bank longevity, or on setting arbitrary thresholds of 1% or 5% confidence that the species is not present. Rather than declaring eradication at some arbitrary level of confidence, we take an economic approach in which we stop looking when the expected costs outweigh the expected benefits. We develop theory that determines the number of years of absent surveys required to minimize the net expected cost. Given detection of a species is imperfect, the optimal stopping time is a trade-off between the cost of continued surveying and the cost of escape and damage if eradication is declared too soon. A simple rule of thumb compares well to the exact optimal solution using stochastic dynamic programming. Application of the approach to the eradication programme of Helenium amarum reveals that the actual stopping time was a precautionary one given the ranges for each parameter. © 2006 Blackwell Publishing Ltd/CNRS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Invasive non-native plants have negatively impacted on biodiversity and ecosystem functions world-wide. Because of the large number of species, their wide distributions and varying degrees of impact, we need a more effective method for prioritizing control strategies for cost-effective investment across heterogeneous landscapes. Here, we develop a prioritization framework that synthesizes scientific data, elicits knowledge from experts and stakeholders to identify control strategies, and appraises the cost-effectiveness of strategies. Our objective was to identify the most cost-effective strategies for reducing the total area dominated by high-impact non-native plants in the Lake Eyre Basin (LEB). We use a case study of the ˜120 million ha Lake Eyre Basin that comprises some of the most distinctive Australian landscapes, including Uluru-Kata Tjuta National Park. More than 240 non-native plant species are recorded in the Lake Eyre Basin, with many predicted to spread, but there are insufficient resources to control all species. Lake Eyre Basin experts identified 12 strategies to control, contain or eradicate non-native species over the next 50 years. The total cost of the proposed Lake Eyre Basin strategies was estimated at AU$1·7 billion, an average of AU$34 million annually. Implementation of these strategies is estimated to reduce non-native plant dominance by 17 million ha – there would be a 32% reduction in the likely area dominated by non-native plants within 50 years if these strategies were implemented. The three most cost-effective strategies were controlling Parkinsonia aculeata, Ziziphus mauritiana and Prosopis spp. These three strategies combined were estimated to cost only 0·01% of total cost of all the strategies, but would provide 20% of the total benefits. Over 50 years, cost-effective spending of AU$2·3 million could eradicate all non-native plant species from the only threatened ecological community within the Lake Eyre Basin, the Great Artesian Basin discharge springs. Synthesis and applications. Our framework, based on a case study of the ˜120 million ha Lake Eyre Basin in Australia, provides a rationale for financially efficient investment in non-native plant management and reveals combinations of strategies that are optimal for different budgets. It also highlights knowledge gaps and incidental findings that could improve effective management of non-native plants, for example addressing the reliability of species distribution data and prevalence of information sharing across states and regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In tropical forests, natural disturbance creates opportunities for species to claim previously utilized space and resources and is considered an important mechanism in the maintenance of species diversity. However, ecologists have long recognized that disturbance also promotes exotic plant invasions. Cyclones cause extensive defoliation, loss of major branches and multiple tree falls, resulting in a significantly more open canopy and increased light and heat levels in the understorey. The widespread and massive disturbance caused by cyclones provides ideal conditions for rapid recruitment and spread of invasive species. The ecological roles of invasive species in rainforest habitats following such a severe disturbance are poorly understood. Severe category 4 Cyclone Larry crossed the North Queensland coast in March 2006 causing massive disturbance to rainforest habitats from Tully to Cairns and west to the Atherton Tablelands. We established 10 plots in an area extensively damaged by this cyclone near El Arish in North Queensland. On each plot nine 2 × 2 m quadrats were established with three quadrats per plot in each of the following treatments: (i) complete debris removal down to the soil layer, (ii) removal of coarse woody debris only, and (iii) uncleared. We monitored recruitment, growth and mortality of all native and invasive species in the 90 quadrats every 3 months since the cyclone. Here we present the recruitment dynamics of invasive species across the study area in relation to the level of disturbance, the type of quadrat treatment, and the diversity and abundance of the native recruiting flora over the first 12 months post-cyclone. Our results suggest that invasive species will mostly comprise a transient component of the flora in the early stages of the successional response. However, some species may have longer-term effects on the successional trajectory of the rainforest and future forest composition and structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Invasive plants are a serious threat to biodiversity. Yet, in some cases, they may play an important ecological role in heavily modified landscapes, such as where fleshy-fruited invasive plants support populations of native frugivores. How can such conservation conflicts be managed? We advocate an approach in which native fleshy-fruited plants are ranked on their ability to provide the fruit food resources for native frugivores currently being provided by invasive plants. If these native taxa are preferentially used, where ecologically appropriate, in plantings for restoration and in park and garden settings, they could help support native frugivore populations in the event of extensive invasive plant control. We develop and critically examine six approaches to selecting candidate native plant taxa: a multivariate approach based on the frugivore assemblage, a scoring model, and several multivariate approaches (including trait combinations having the greatest correlation with the diet of the native frugivore assemblage) based on the functional traits of fruit morphology, phenology, conspicuousness, and accessibility. To illustrate these approaches, we use a case study with Bitou bush (Chrysanthemoides monilifera subsp. rotundata) (Asteraceae), an Australian Weed of National Significance. The model using a dissimilarity value generated from all available traits identified a set of species used by the frugivores of C. monilifera more than null models. A replacement approach using species ranked by either all traits available or the frugivore community appears best suited to guide selection of plants in restoration practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The liana, hiptage (Hiptage benghalensis), is currently invading the wet tropics of northern Queensland and remnant bushland in south-eastern Queensland, Australia. Trials using seven herbicides and three application methods (foliar, basal bark, and cut stump) were undertaken at a site in north Queensland (158 700 hiptage plants ha−1). The foliar-applied herbicides were only effective in controlling the hiptage seedlings. Of the foliar herbicides trialed, dicamba, fluroxypyr, and triclopyr/picloram controlled >75% of the treated seedlings. On the larger plants, the cut stump applications were more effective than the basal bark treatments. Kills of >95% were obtained when the plants were cut close to ground level (5 cm) and treated with herbicides that were mixed with diesel (fluroxypyr and triclopyr/picloram), with water (glyphosate), or were applied neat (picloram). The costings for the cut stump treatment of a hiptage infestation (85 000 plants ha−1), excluding labor, would be $A14 324 ha−1 using picloram and $A5294 ha−1 and $A2676 ha−1, respectively, using glyphosate and fluroxypyr. Foliar application using dicamba for seedling control would cost $A1830 ha−1. The costs range from 2–17 cents per plant depending on the treatment. A lack of hiptage seeds below the soil surface, a high germinability (>98%) of the viable seeds, a low viability (0%) of 2 year old, laboratory-stored fruit, and a seedling density of 0.1 seedlings m−2 12 months after a control program indicate that hiptage might have a short-term seed bank. Protracted recolonization from the seed bank would therefore be unlikely after established seed-producing plants have been controlled.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While the method using specialist herbivores in managing invasive plants (classical biological control) is regarded as relatively safe and cost-effective in comparison to other methods of management, the rarity of strict monophagy among insect herbivores illustrates that, like any management option, biological control is not risk-free. The challenge for classical biological control is therefore to predict risks and benefits a priori. In this study we develop a simulation model that may aid in this process. We use this model to predict the risks and benefits of introducing the chrysomelid beetle Charidotis auroguttata to manage the invasive liana Macfadyena unguis-cati in Australia. Preliminary host-specificity testing of this herbivore indicated that there was limited feeding on a non-target plant, although the non-target was only able to sustain some transitions of the life cycle of the herbivore. The model includes herbivore, target and non-target life history and incorporates spillover dynamics of populations of this herbivore from the target to the non-target under a variety of scenarios. Data from studies of this herbivore in the native range and under quarantine were used to parameterize the model and predict the relative risks and benefits of this herbivore when the target and non-target plants co-occur. Key model outputs include population dynamics on target (apparent benefit) and non-target (apparent risk) and fitness consequences to the target (actual benefit) and non-target plant (actual risk) of herbivore damage. The model predicted that risk to the non-target became unacceptable (i.e. significant negative effects on fitness) when the ratio of target to non-target in a given patch ranged from 1:1 to 3:2. By comparing the current known distribution of the non-target and the predicted distribution of the target we were able to identify regions in Australia where the agent may be pose an unacceptable risk. By considering risk and benefit simultaneously, we highlight how such a simulation modelling approach can assist scientists and regulators in making more objective decisions a priori, on the value of releasing specialist herbivores as biological control agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Senna obtusifolia (sicklepod) is an invasive weed of northern Australia, where it significantly impacts agricultural productivity and alters natural ecosystem structure and function. Although currently restricted to northern regions, the potential for S. obtusifolia to spread south is not known. Using the eco-climatic model CLIMEX, this study simulated the potential geographic distribution of S. obtusifolia in Australia under two scenarios. Model parameters for both scenarios were derived from the distribution of S. obtusifolia throughout North and Central America. The first scenario used these base model parameters to predict the distribution of S. obtusifolia in Australia, whilst the second model predicted the distribution of a cold susceptible S. obtusifolia ecotype that is reported to occur in the USA. Both models predicted the potential for an extensive S. obtusifolia distribution, with the first model indicating suitable climatic conditions occurring predominantly in coastal regions from the Northern Territory, to far north Queensland and into northern Victoria. The cold susceptible ecotype displayed a comparatively reduced distribution in the southern parts of Australia, where inappropriate temperatures, a lack of thermal accumulation and cold stress restrict the invasion south to the coastal regions of central New South Wales. The extent of the predicted distribution of both ecotypes of S. obtusifolia reinforces the need for strategic management at a national scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated aspects of the reproductive ecology of Ochna serrulata (Hochst.) Walp., an invasive plant in eastern Australia. O. serrulata drupes were similar in size to fleshy fruits of other local invasive plants, but showed some distinct differences in quality, with a very high pulp lipid content (32.8% of dry weight), and little sugar and water. Seeds were dispersed by figbirds, Sphecotheres viridis Vieillot, a locally abundant frugivore, and comprised between 10 and 50% of all non-Ficus spp. fruit consumed during October and November. The rate of removal of O. serrulata drupes was greater in bushland than suburban habitats, indicating that control in bushland habitats should be a priority, but also that suburban habitats are likely to act as significant seed sources for reinvasion of bushland. Germination occurred under all seed-processing treatments (with and without pulp, and figbird gut passage), suggesting that although frugivores are important for dispersal, they are not essential for germination. Recruitment of buried and surface-sown seed differed between greenhouse and field experiments, with minimal recruitment of surface-sown seed in the field. Seed persistence was low, particularly under field conditions, with 0.75% seed viability after 6 months and 0% at 12 months. This provides an opportunity to target control efforts in south-eastern Queensland in spring before fruit set, when there is predicted to be few viable seeds in the soil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large geographic areas can have numerous incipient invasive plant populations that necessitate eradication. However, resources are often deficient to address every infestation. Within the United States, weed lists (either state-level or smaller unit) generally guide the prioritization of eradication of each listed species uniformly across the focus region. This strategy has several limitations that can compromise overall effectiveness, which include spending limited resources on 1) low impact populations, 2) difficult to access populations, or 3) missing high impact populations of low priority species. Therefore, we developed a novel science-based, transparent, analytical ranking tool to prioritize weed populations, instead of species, for eradication and tested it on a group of noxious weeds in California. For outreach purposes, we named the tool WHIPPET (Weed Heuristics: Invasive Population Prioritization for Eradication Tool). Using the Analytic Hierarchy Process that included expert opinion, we developed three major criteria, four sub-criteria, and four sub-sub-criteria, taking into account both species and population characteristics. Subject matter experts weighted and scored these criteria to assess the relative impact, potential spread, and feasibility of eradication (major criteria) for 100 total populations of 19 species. Species-wide population scores indicated that conspecific populations do not necessarily group together in the final ranked output. Thus, priority lists based solely on species-level characteristics are less effective compared to a blended prioritization based on both species attributes and individual population and site parameters. WHIPPET should facilitate a more efficacious decision-making process allocating limited resources to target invasive plant infestations with the greatest predicted impacts to the region under consideration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Technical highlights 2009–10, with detailed progress reports on the latest invasive plant and animal research undertaken by Biosecurity Queensland, a service unit of the Department of Employment, Economic Development and Innovation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Technical highlights 2008–09, with detailed progress reports on the latest invasive plant and animal research undertaken by Biosecurity Queensland, a service unit of the Department of Employment, Economic Development and Innovation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Technical highlights 2007–08, with detailed progress reports on the latest invasive plant and animal research undertaken by Biosecurity Queensland, a service unit of the Department of Primary Industries and Fisheries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In subtropical Australia, many native and invasive plant species rely on a shared suite of frugivores, largely birds, for seed dispersal. Many native plants fruit during summer in this region, whereas most invasive plants fruit during winter, thus providing the opportunity for contagious dispersal of seeds beneath synchronously fruiting species. We sampled invasive and native seed rain beneath the canopy of a native summer-fruiting tree Guioa semiglauca and an invasive winter-fruiting tree Cinnamomum camphora, in three study sites over the course of a year. In July, during peak fruiting season for C. camphora and other invasive species, seed rain of invasive species was higher beneath C. camphora than G. semiglauca. This was partly due to the invasive tree Ligustrum lucidum, whose seed rain was three times higher beneath C. camphora than beneath the native tree. In February, seed rain of native species was more abundant beneath the canopy of G. semiglauca than beneath C. camphora, despite the fact that C. camphora was also fruiting at this time. This was probably due to the larger fruit crop produced by G. semiglauca at this time of year. Our study provides evidence that the presence of invasive bird-dispersed plants may facilitate contagious seed dispersal of other invaders, and likewise native species may facilitate seed spread of other native plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The invasive liana cat’s claw creeper, Macfadyena unguis-cati, native to tropical Central and South America, is a major environmental weed in Queensland and New South Wales (NSW). Two morphologically distinct cat’s claw creeper varieties occur in Australia, a ‘short-pod’ variety that is widespread through Queensland and NSW and a ‘long-pod’ variety restricted to a few sites in southeast Queensland. In this study we report the differences in the above-ground morphological, phenological and reproductive traits between the two varieties. The ‘long-pod’ variety has significantly larger leaves, larger pods, and larger number of seeds per pod than the ‘short-pod’ variety. The ‘short-pod’ variety has a slightly wider pods, and thicker leaves than the ‘long-pod’ variety. Both varieties have a yellow trumpet shaped flower, but the flower of the ‘long-pod’ variety has a deeper hue of yellow than the ‘short-pod’ flower. The fruits of the ‘short-pod’ variety mature in late summer to early autumn while the fruits of ‘long-pod’ variety mature in late winter to early spring. The more widespread nature of the ‘short-pod’ variety could potentially be due to a preference for this variety as an ornamental plant, due to its more presentable foliage characteristics and shorter pods, in contrast to the ‘long-pod’ variety.