296 resultados para Invariants.
Resumo:
In this paper, we present an algebraic method to study and design spatial parallel manipulators that demonstrate isotropy in the force and moment distributions. We use the force and moment transformation matrices separately, and derive conditions for their isotropy individually as well as in combination. The isotropy conditions are derived in closed-form in terms of the invariants of the quadratic forms associated with these matrices. The formulation is applied to a class of Stewart platform manipulator, and a multi-parameter family of isotropic manipulators is identified analytically. We show that it is impossible to obtain a spatially isotropic configuration within this family. We also compute the isotropic configurations of an existing manipulator and demonstrate a procedure for designing the manipulator for isotropy at a given configuration.
Resumo:
Distributed computing systems can be modeled adequately by Petri nets. The computation of invariants of Petri nets becomes necessary for proving the properties of modeled systems. This paper presents a two-phase, bottom-up approach for invariant computation and analysis of Petri nets. In the first phase, a newly defined subnet, called the RP-subnet, with an invariant is chosen. In the second phase, the selected RP-subnet is analyzed. Our methodology is illustrated with two examples viz., the dining philosophers' problem and the connection-disconnection phase of a transport protocol. We believe that this new method, which is computationally no worse than the existing techniques, would simplify the analysis of many practical distributed systems.
Resumo:
We introduce a one-dimensional version of the Kitaev model consisting of spins on a two-legged ladder and characterized by Z(2) invariants on the plaquettes of the ladder. We map the model to a fermionic system and identify the topological sectors associated with different Z2 patterns in terms of fermion occupation numbers. Within these different sectors, we investigate the effect of a linear quench across a quantum critical point. We study the dominant behavior of the system by employing a Landau-Zener-type analysis of the effective Hamiltonian in the low-energy subspace for which the effective quenching can sometimes be non-linear. We show that the quenching leads to a residual energy which scales as a power of the quenching rate, and that the power depends on the topological sectors and their symmetry properties in a non-trivial way. This behavior is consistent with the general theory of quantum quenching, but with the correlation length exponent nu being different in different sectors. Copyright (C) EPLA, 2010
Resumo:
We review work initiated and inspired by Sudarshan in relativistic dynamics, beam optics, partial coherence theory, Wigner distribution methods, multimode quantum optical squeezing, and geometric phases. The 1963 No Interaction Theorem using Dirac's instant form and particle World Line Conditions is recalled. Later attempts to overcome this result exploiting constrained Hamiltonian theory, reformulation of the World Line Conditions and extending Dirac's formalism, are reviewed. Dirac's front form leads to a formulation of Fourier Optics for the Maxwell field, determining the actions of First Order Systems (corresponding to matrices of Sp(2,R) and Sp(4,R)) on polarization in a consistent manner. These groups also help characterize properties and propagation of partially coherent Gaussian Schell Model beams, leading to invariant quality parameters and the new Twist phase. The higher dimensional groups Sp(2n,R) appear in the theory of Wigner distributions and in quantum optics. Elegant criteria for a Gaussian phase space function to be a Wigner distribution, expressions for multimode uncertainty principles and squeezing are described. In geometric phase theory we highlight the use of invariance properties that lead to a kinematical formulation and the important role of Bargmann invariants. Special features of these phases arising from unitary Lie group representations, and a new formulation based on the idea of Null Phase Curves, are presented.
Resumo:
We examine quark flavour mixing matrices for three and four generations using the recursive parametrization of U(n) and SU(n) matrices developed earlier. After a brief summary of the recursive parametrization, we obtain expressions for the independent rephasing invariants and also the constraints on them that arise from the requirement of mod symmetry of the flavour mixing matrix.
Resumo:
Discrete vortex simulations of the mixing layer carried out in the past have usually involved large induced velocity fluctuations, and thus demanded rather long time-averaging to obtain satisfactory values of Reynolds stresses and third-order moments. This difficulty has been traced here, in part, to the use of discrete vortices to model what in actuality are continuous vortex sheets. We propose here a novel two-dimensional vortex sheet technique for computing mixing layer flow in the limit of infinite Reynolds number. The method divides the vortex sheet into constant-strength linear elements, whose motions are computed using the Biot-Savart law. The downstream far-field is modelled by a steady vorticity distribution derived by application of conical similarity from the solution obtained in a finite computational domain. The boundary condition on the splitter plate is satisfied rigorously using a doublet sheet. The computed large-scale roll-up of the vortex sheet is qualitatively similar to experimentally obtained shadow-graphs of the plane turbulent mixing layer. The mean streamwise velocity profile and the growth rate agree well with experimental data. The presently computed Reynolds stresses and third-order moments are comparable with experimental and previous vortex-dynamical results, without using any external parameter (such as the vortex core-size) of the kind often used in the latter. The computed autocorrelations are qualitatively similar to experimental results along the top and bottom edges of the mixing layer, and show a well-defined periodicity along the centreline. The accuracy of the present computation is independently established by demonstrating negligibly small changes in the five invariants (including the Hamiltonian) in vortex dynamics.
Resumo:
We present here a critical assessment of two vortex approaches (both two-dimensional) to the modelling of turbulent mixing layers. In the first approach the flow is represented by point vortices, and in the second it is simulated as the evolution of a continuous vortex sheet composed of short linear elements or ''panels''. The comparison is based on fresh simulations using approximately the same number of elements in either model, paying due attention in both to the boundary conditions far downstream as well as those on the splitter plate from which the mixing layer issues. The comparisons show that, while both models satisfy the well-known invariants of vortex dynamics approximately to the same accuracy, the vortex panel model, although ultimately not convergent, leads to smoother roll-up and values of stresses and moments that are in closer agreement with the experiment, and has a higher computational efficiency for a given degree of convergence on moments. The point vortex model, while faster for a given number of elements, produces an unsatisfactory roll-up which (for the number of elements used) is rendered worse by the incorporation of the Van der Vooren correction for sheet curvature.
Resumo:
In this paper, we present an algebraic method to study and design spatial parallel manipulators that demonstrate isotropy in the force and moment distributions.We use the force and moment transformation matrices separately,and derive conditions for their isotropy individually as well as in combination. The isotropy conditions are derived in closed-form in terms of the invariants of the quadratic forms associated with these matrices. The formulation has been applied to a class of Stewart platform manipulators. We obtain multi-parameter families of isotropic manipulator analytically. In addition to computing the isotropic configurations of an existing manipulator,we demonstrate a procedure for designing the manipulator for isotropy at a given configuration.
Resumo:
Analyses of the invariants of the velocity gradient ten- sor were performed on flow fields obtained by DNS of compressible plane mixing layers at convective Mach num- bers Mc=0:15 and 1.1. Joint pdfs of the 2nd and 3rd invariants were examined at turbulent/nonturbulent (T/NT) boundaries—defined as surfaces where the local vorticity first exceeds a threshold fraction of the maximum of the mean vorticity. By increasing the threshold from very small lev-els, the boundary points were moved closer into the turbulent region, and the effects on the pdfs of the invariants were ob-served. Generally, T/NT boundaries are in sheet-like regions at both Mach numbers. At the higher Mach number a distinct lobe appears in the joint pdf isolines which has not been ob-served/reported before. A connection to the delayed entrain-ment and reduced growth rate of the higher Mach number flow is proposed.
Resumo:
In this paper, we present a methodology for designing a compliant aircraft wing, which can morph from a given airfoil shape to another given shape under the actuation of internal forces and can offer sufficient stiffness in both configurations under the respective aerodynamic loads. The least square error in displacements, Fourier descriptors, geometric moments, and moment invariants are studied to compare candidate shapes and to pose the optimization problem. Their relative merits and demerits are discussed in this paper. The `frame finite element ground structure' approach is used for topology optimization and the resulting solutions are converted to continuum solutions. The introduction of a notch-like feature is the key to the success of the design. It not only gives a good match for the target morphed shape for the leading and trailing edges but also minimizes the extension of the flexible skin that is to be put on the airfoil frame. Even though linear small-displacement elastic analysis is used in optimization, the obtained designs are analysed for large displacement behavior. The methodology developed here is not restricted to aircraft wings; it can be used to solve any shape-morphing requirement in flexible structures and compliant mechanisms.
Resumo:
Let M be the completion of the polynomial ring C(z) under bar] with respect to some inner product, and for any ideal I subset of C (z) under bar], let I] be the closure of I in M. For a homogeneous ideal I, the joint kernel of the submodule I] subset of M is shown, after imposing some mild conditions on M, to be the linear span of the set of vectors {p(i)(partial derivative/partial derivative(w) over bar (1),...,partial derivative/partial derivative(w) over bar (m)) K-I] (., w)vertical bar(w=0), 1 <= i <= t}, where K-I] is the reproducing kernel for the submodule 2] and p(1),..., p(t) is some minimal ``canonical set of generators'' for the ideal I. The proof includes an algorithm for constructing this canonical set of generators, which is determined uniquely modulo linear relations, for homogeneous ideals. A short proof of the ``Rigidity Theorem'' using the sheaf model for Hilbert modules over polynomial rings is given. We describe, via the monoidal transformation, the construction of a Hermitian holomorphic line bundle for a large class of Hilbert modules of the form I]. We show that the curvature, or even its restriction to the exceptional set, of this line bundle is an invariant for the unitary equivalence class of I]. Several examples are given to illustrate the explicit computation of these invariants.
Resumo:
We present a comprehensive study of two of the most experimentally relevant extensions of Kitaev's spinless model of a one-dimensional p-wave superconductor: those involving (i) longer-range hopping and superconductivity and (ii) inhomogeneous potentials. We commence with a pedagogical review of the spinless model and, as a means of characterizing topological phases exhibited by the systems studied here, we introduce bulk topological invariants as well as those derived from an explicit consideration of boundary modes. In time-reversal symmetric systems, we find that the longer range hopping leads to topological phases characterized by multiple Majorana modes. In particular, we investigate a spin model that respects a duality and maps to a fermionic model with multiple Majorana modes; we highlight the connection between these topological phases and the broken symmetry phases in the original spin model. In the presence of time-reversal symmetry breaking terms, we show that the topological phase diagram is characterized by an extended gapless regime. For the case of inhomogeneous potentials, we explore phase diagrams of periodic, quasiperiodic, and disordered systems. We present a detailed mapping between normal state localization properties of such systems and the topological phases of the corresponding superconducting systems. This powerful tool allows us to leverage the analyses of Hofstadter's butterfly and the vast literature on Anderson localization to the question of Majorana modes in superconducting quasiperiodic and disordered systems, respectively. We briefly touch upon the synergistic effects that can be expected in cases where long-range hopping and disorder are both present.
Resumo:
Arterial walls have a regular and lamellar organization of elastin present as concentric fenestrated networks in the media. In contrast, elastin networks are longitudinally oriented in layers adjacent to the media. In a previous model exploring the biomechanics of arterial elastin, we had proposed a microstructurally motivated strain energy function modeled using orthotropic material symmetry. Using mechanical experiments, we showed that the neo-Hookean term had a dominant contribution to the overall form of the strain energy function. In contrast, invariants corresponding to the two fiber families had smaller contributions. To extend these investigations, we use biaxial force-controlled experiments to quantify regional variations in the anisotropy and nonlinearity of elastin isolated from bovine aortic tissues proximal and distal to the heart. Results from this study show that tissue nonlinearity significantly increases distal to the heart as compared to proximally located regions (). Distally located samples also have a trend for increased anisotropy (), with the circumferential direction stiffer than the longitudinal, as compared to an isotropic and relatively linear response for proximally located elastin samples. These results are consistent with the underlying tissue histology from proximally located samples that had higher optical density (), fiber thickness (), and trend for lower tortuosity () in elastin fibers as compared to the thinner and highly undulating elastin fibers isolated from distally located samples. Our studies suggest that it is important to consider elastin fiber orientations in investigations that use microstructure-based models to describe the contributions of elastin and collagen to arterial mechanics.
Resumo:
The explicit description of homogeneous operators and localization of a Hilbert module naturally leads to the definition of a class of Cowen-Douglas operators possessing a flag structure. These operators are irreducible. We show that the flag structure is rigid in the sense that the unitary equivalence class of the operator and the flag structure determine each other. We obtain a complete set of unitary invariants which are somewhat more tractable than those of an arbitrary operator in the Cowen-Douglas class. (C) 2014 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
A pair of commuting operators (S,P) defined on a Hilbert space H for which the closed symmetrized bidisc Gamma = {(z(1) + z(2), z(1)z(2)) : vertical bar z(1)vertical bar <= 1, vertical bar z(2)vertical bar <= 1} subset of C-2 is a spectral set is called a Gamma-contraction in the literature. A Gamma-contraction (S, P) is said to be pure if P is a pure contraction, i.e., P*(n) -> 0 strongly as n -> infinity Here we construct a functional model and produce a set of unitary invariants for a pure Gamma-contraction. The key ingredient in these constructions is an operator, which is the unique solution of the operator equation S - S*P = DpXDp, where X is an element of B(D-p), and is called the fundamental operator of the Gamma-contraction (S, P). We also discuss some important properties of the fundamental operator.